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[1] We develop a technique for using monostatic, electronically steerable incoherent scatter
radar (ISR) to generate 2‐D estimates of F region flow fields. Tikhonov regularization is
used to achieve robustness in the presence of spatial variation. The regularization functional
imposes partial incompressibility on the medium and is therefore physically justified.
Although the estimator has difficulty resolving sharp discontinuities, it performs well in
regions of uniform flow. In order to characterize the effect of the regularization parameter,
we test the performance of the operator in three simulated scenarios. We then analyze
data from an experiment on the Poker Flat ISR. The experimental results are validated
against coregistered all‐sky optical data and are found to be mostly consistent with these
independent measurements. Namely, the radar‐derived estimates show a reduction of ion
flow wherever the optical data indicates an auroral enhancement. The estimated flow is
directed parallel to an arc boundary, consistent with an electric field directed toward the arc.
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1. Introduction
[2] The high‐latitude ionosphere is subject to magneto-

spheric forcing in a variety of forms (e.g., magnetospheric
precipitation, thermospheric winds, and Alfvèn waves).
These sources impart a high degree of variability on the
density, composition, temperature, and flows of the ion-
ized and neutral gases. Resolving this local variability is a
particular interest of high‐latitude atmospheric studies. In
this paper, we develop an inverse‐theoretic approach to
estimating 2‐D flow fields from line‐of‐sight velocities
obtained from a monostatic electronically steerable radar
antenna.
[3] Incoherent scatter radar (ISR) is a powerful technique

for studying the structure of the ionosphere. In a mono-
static ISR, the backscattered power spectrum is analyzed
to provide range‐resolved estimates of ionospheric state
parameters. This work focuses on the bulk Doppler shift of
the spectrum, which provides a measure of the bulk ion
flow projected onto the line of sight of the radar beam. By

steering the radar to observe velocities in a number of
directions, it is possible to reconstruct the components
of the underlying vector velocity. Hagfors and Behnke
[1974] first demonstrated the recovery of a single vector
velocity using a scanning monostatic ISR. Doupnik et al.
[1977] included a physical model of ionospheric velocity
to estimate the electric field vector. Sulzer et al. [2005]
introduced linear regularization to deal with rapid tem-
poral variations.
[4] A notable limitation of this scanning mode is the

inertia associated with physically steering a heavy dish.
In recent years, ISR’s employing electronically steerable
arrays have begun to appear: notably, theMiddle andUpper
atmosphere (MU) radar in Japan, Poker Flat ISR (PFISR)
in Alaska, the Resolute Bay ISR (RISR) in Canada, and the
planned EISCAT 3D project. These systems overcome
that inertial burden. An experiment can now be performed
that probes the sky in multiple directions on a pulse‐by‐
pulse basis. The coherent integration required to resolve
plasma state parameters is performed, in essence, simul-
taneously over all directions, analogous to the way an
image is formed in a CCD camera. Although there is an
inherent trade‐off between temporal and spatial resolution,
this direct imagingmodality has already yielded promising
results [Semeter et al., 2008; Nicolls and Heinselman,
2007a, 2007b]. Hysell et al. [2009] verify PFISR‐derived
velocity measurements by comparing with an interfero-
metric imaging technique from a coherent scatter radar.
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[5] Phased array radar experiments generally involve
an arbitrary number and arrangement of beams. Thus the
problem of estimating velocity components from pro-
jections is often overdetermined. Heinselman and Nicolls
[2008] employ a linear least squares estimator, which is
capable of handling this type of problem (making use of
all available data while respecting the limited rank of
the corresponding projection operator). Our approach is
similar, but we include physical constraints in the estimate
(i.e., regularization) to deal with the spatial variability
characteristic of high latitudes.
[6] We analyze the limitations of this type of recon-

struction in the high‐latitude F region and present a case
study. In section 2, we describe the measurement process
and howwe exploit the rapid scanning capability of PFISR
to generate a two‐dimensional “snapshot” of F region
ion flow patterns. The accuracy of the technique is eval-
uated through simulation in section 3. We also present a
case study showing some of the features demonstrated in
the preceding simulation. Section 4 presents a summary of
findings and suggested extensions.

2. Methodology
[7] We frame the problem of velocity field estimation

as a linear discrete inverse problem. That is, given a
forward model mapping the underlying field v(x, y) to a
set of independent line‐of‐sight (LOS) measurements

vlos, we generate an estimate v̂(x, y) by running the
process in reverse, i.e., by applying the inverse model.

2.1. Observation Geometry

[8] PFISR employs an electronically steerable array,
which can be cycled through a predefined set of beam
positions on a pulse‐by‐pulse basis. This allows sampling
an entire field “simultaneously,” overcoming the time
ambiguity introduced by the relatively slow scanning of
a dish antenna. Measurements are resolved along range
in each direction, so that scanning in both azimuth and
elevation allows volumetrically distributed data to be
resolved. One full cycle of measurements from all beams
is defined as a “frame.”
[9] We focus on a beam pattern particular to a PFISR

experiment on 24 March 2009. The volumetric data were
acquired using a square array of 5 × 5 beams with one
additional beam in the up‐B direction (Figure 1a). At
350 km altitude, the sampled angular space subtends an
approximately rectangular region of dimensions 300 km ×
250 km. In Figure 1b, the entire set of sample points is
projected to z = 0. We include data ranging in altitude
from 200 to 350 km, where the parallel component of
v is considered to be negligible. Although significant ion
upwelling may occur, field‐aligned velocities in this range
are <200 m/s, while convective flows are typically in the
km/s range [Fujii et al., 2002].

Figure 1. The beam configuration used in the experiment of section 3. (a) The 26 beams in
angular coordinates. (b) Rotation of measurements and pixelization in radar‐centered geomagnetic
coordinates. Several samples are acquired along each beam, equally spaced in range. Solid circles
denote the endpoints of each beam.
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[10] After collecting a certain number of samples (deter-
mined by the desired temporal resolution as well as the
signal statistics) along each beam in Figure 1, the auto-
correlation function (ACF) is computed and analyzed to
find the set of ISR parameters that best fits the data. A
nonlinear least squares fitting procedure yields the line‐of‐
sight velocity for each sample point.

2.2. Forward Model

[11] Each ACF yields an independent measurement of
range‐resolved vlos

i , the ion velocity projected along the
direction of beam i. Consider the simplified example in
Figure 2. The three measurements vlos

i are projections
of the vector v = [vpe, vpn, vap]

T (in geomagnetic coor-
dinates, where the subscripts pe, pn, and ap stand for
perpendicular‐east, perpendicular‐north, and antiparallel
components, respectively) onto three unique beam direc-
tions. This threefold projection is a linear operation, and
can therefore be expressed in matrix form:

vlos ¼
v1los
v2los
v3los

2
4

3
5¼

k1pe k1pn k1ap
k2pe k2pn k2ap
k3pe k3pn k3ap

2
64

3
75

vpe
vpn
vap

2
4

3
5¼ Av; ð1Þ

where ki = [kpe
i , kpn

i , kap
i ]T is a unit vector in the direction

of beam i. Ideally, this can be solved by inverting the
square matrix A. This is rarely practical, for reasons that
will be treated later.
[12] In the example above, all the measurements cor-

respond to the same velocity v. Since we are interested in
resolving the spatial variability of the vector field v(x, y),
we do not assume uniformity among all the measurements
in a given frame. Instead, the matrix A must be expanded
to include multiple, spatially distributed vectors v(x, y).
Already, we run up against a limitation of algebraically
inverting the projection operation, since this expanded A
is not necessarily a full‐rank matrix.

2.3. Discretization

[13] Although the LOS measurements are inherently
discrete, we assume an underlying continuous velocity
field v(x, y). For implementation in a computer, this can be
discretized spatially and regarded as a column vector, i.e.,

vðx; yÞ ¼
XN
j¼1

vjbjðx; yÞ;

where {bj(x, y)} j = 1…N is some basis spanning the region
of interest. This can be simple rectangular pixels, or
something more elaborate such as a multiscale (wavelet)
basis. In practice, each component of the vector v is dis-
cretized independently, and the resulting column vectors
stacked so that

v ¼ v1pe; . . . ; v
N
pe; v

1
pn; . . . ; v

N
pn; v

1
ap; . . . ; v

N
ap

h iT
:

[14] We use a rectangular pixel basis because it is
intuitive and easy to implement. It also allows an arbi-
trary beam arrangement. Because the beams in Figure 1a
are roughly aligned with the magnetic meridian, the data is
first rotated to geomagnetic coordinates so that the data are
aligned with pixels. The 4 × 4 pixelization of Figure 1b
satisfies a trade‐off between spatial resolution and the
amount of independent information contained in each
pixel. Although we could choose a finer sampling, each
pixel must contain data from approximately three beams.
[15] In general, the velocity field v(x, y) is divided into

N pixels and we observe M LOS projections. This set of
projections is expressed in the M × 3N matrix

A ¼

k1pe � � � � � � k1pn � � � � � � k1ap � � � � � �
� � � k2pe � � � � � � k2pn � � � � � � k2ap � � �

..

. ..
. ..

.

� � � � � � kMpe � � � � � � kMpn � � � � � � kMap

2
66664

3
77775:

Figure 2. A uniform vector velocity is projected onto three lines of sight.
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That is, each row contains three nonzero elements map-
ping the velocity vector in the jth pixel to the ith LOS
measurement such that (by extension of (1))

vlos ¼ Av: ð2Þ
Clearly, for an arbitrary discretization and selection of
beams, this matrix is not directly invertible. Moore‐
Penrose pseudoinverse and least squares fitting may yield
a solution to (2), but such solutions do not consider
statistical uncertainty in the data. Furthermore it is useful
to constrain the solution according to a spatial regularity
criterion. We therefore turn to the field of inverse theory.

2.4. Inversion

[16] Inverse theory provides a framework for intro-
ducing exogenous information to solve undetermined and
overdetermined problems. Inverse theory is discussed in
a number of standard texts [e.g., Tarantola, 2005;Menke,
1989; Aster et al., 2005]. The forward model (2) consists
of three terms: the LOS observations vlos, the underlying
discretized velocity field v, and the operator A mapping
one to the other. An inverse model is constructed from
these three elements and then applied to the observations
to recover the underlying field. Several approaches have
been developed, and we proceed with the classic method
of Tikhonov regularization.
[17] In general terms, a linear inverse problem considers

a set of observations y corresponding to the state x through
the linear formula y = Ax. The goal is to estimate x by
minimizing a function of the observations, usually paired
with a side constraint on the estimate, for example:

x̂ ¼ argmin
x

ky� Axk2W1
þ �2kLxk2W2

� �
: ð3Þ

The first term in parentheses is a data fit term, the second
is the side constraint, and a is the regularization param-
eter controlling the relative influence of each term. The
notation k·kW denotes a weighted l2 norm: (·)TW(·). The
solution of (3) is given by the normal equations

ATW1Aþ �2LTW2L
� �

x̂ ¼ ATW1y: ð4Þ

[18] This is the deterministic view of inverse theory
and regularization. We can further derive the solution by
making use of the statistics of each quantity. Let us
assume that y is corrupted by a zero mean noise vector w,

y ¼ Axþ w;

where x is a zero‐mean Gaussian random variable with
covariance matrix Q = (a2LTW2L)

−1, w is Gaussian with
covariance matrix R =W1

−1, and w and x are uncorrelated.

Then, rearranging terms and using Bayes’ rule, (3) is
equivalent to

x̂ ¼ argmax
x

� 1

2
y� Axk k2R�1� 1

2
xk k2Q�1

� �

¼ argmax
x

ln pðyjxÞ þ ln pðxÞ½ �
¼ argmax

x
ln pðxjyÞ:

That is, (4) is the maximum a posteriori (MAP) estimator
with a side constraint imposed on x. Given these statistics,
the error covariance can also be determined. In summary,
the estimate is given by

x̂MAP ¼ ATR�1Aþ Q�1
� ��1

ATR�1y; ð5Þ

and the error covariance is

Sx̂ ¼ ðATR�1Aþ Q�1Þ�1: ð6Þ

[19] So far, the discussion has been in very general terms,
with the side constraint kLxk2 unqualified. Typically, this
constraint is chosen to penalize large values (L = I) or to
enforce smoothness (L represents some discrete approxi-
mation to the first derivative). For the problem of recov-
ering ion flow, we argue that the appropriate constraint
should represent the divergence operator. That is, the ion-
osphere is incompressible, and we may apply this physical
constraint (r · v = 0) to regularize the inversion. The
matrix corresponding to the divergence operation is

L ¼
Lpe 0 0
0 Lpn 0
0 0 Lap

2
4

3
5; ð7Þ

where the submatrices encode the discrete approximations
of the first derivatives, e.g.,

Lpn ¼

�1 1 0 0 0 . . . 0
0 �1 1 0 0 . . . 0

. .
.

0 . . . 0 0 �1 1 0
0 . . . 0 0 0 �1 1
0 0 0 . . . 0 0 0

2
6666664

3
7777775
:

Because the forward difference generates a shorter vector
than its input, each submatrix has some all‐zero rows. This
makes the matrix Q degenerate; it has some zero eigen-
values corresponding to the boundaries. The boundary
conditions need not be included in (5) since the data‐fit term
will select values from the observations. The smoothness
constraint is only enforced for the perpendicular compo-
nents. Since we expect the field‐aligned component to be
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very small, we impose a constraint on the magnitude of this
component rather than its smoothness, i.e., Lap = I.

3. Results
[20] The regularization parameter a is a nonnegative

factor that balances the relative influence of measured
data and a priori information. Before applying the esti-
mator to experimental data, it is important to evaluate
how a affects the result. The “optimal” value of a is dif-
ficult to define since selection of the regularization param-
eter is typically a subjective process. A single value is
not likely to yield subjectively “optimal” results for all
measurements. Nevertheless, iterative methods of selec-
tion, whether semiobjective or utterly subjective (e.g.,
visual inspection), in a controlled simulation can aid in
finding a useful practical range of a.
[21] In the following sections, we examine the effect of

the incompressible flow constraint by comparing two
estimators that differ only in the matrix L: Method A uses
L = I; Method B uses the L given by (7). Note that in
(5) and (6), the side constraint L is absorbed into the
covariance matrix Q.When L = I, Q differs fromW2

−1 only
by a scalar factor. Hence the interior weightingmatrixW2

−1

for the side constraint is itself a (diagonal) covariance
matrix that encodes the respective variabilities of vpe, vpn,
and vap, which we have arbitrarily chosen as spe = spn =
500 m/s, sap = 15 m/s. R, the error covariance, is a diag-
onal matrix with variances inversely proportional to range
squared, and with a scaling factor chosen so that the
standard deviation is 10 m/s at 100 km.

3.1. Simulation

[22] We begin by simulating a velocity field morphology
that is common during a substorm, namely, a flow shear
along an active auroral boundary. The light‐colored arrows
in Figure 3 represent the “ground truth” horizontal flows.
The field pattern is divided into two regions: zero flow and

uniform flow. The thick diagonal line signifies the
boundary of the two regions. This pattern is motivated by
auroral observations [de la Beaujardière et al., 1977; de la
Beaujardière and Vondrak, 1982; Weber et al., 1991;
Bahcivan et al., 2006]. Within an auroral arc is a region
of enhanced density (thus conductivity). The electric field
responds to this enhancement by dropping significantly,
and therefore the ion drift goes to essentially zero. At the
arc boundary, the potential gradient produces an electric
field such that the ion flow is parallel to the boundary. The
drop in the electric field is quite abrupt, and for the reso-
lution considered here the step function between the two
regions is an appropriate approximation.
[23] The LOS measurements are generated from this

simulated field v via (2) and then perturbed by a zero‐mean
Gaussian noise vector elos with covariance R as described
above. The three fields shown in Figure 3 are estimated
using Method A and different values of the regularization
parameter a. Figure 4 shows the corresponding simulation
for Method B. In general, both estimators have difficulty
resolving the discontinuity (a violation of the assumption
of uniformitywithin each pixel). For smalla, both produce
very similar solutions (as a approaches zero, the estimators
are equivalent). As a increases, the respective side con-
straints come into play. In Figure 3, the preferred solution
has the minimum overall magnitude, while in Figure 4, the
solution exhibits smooth transitions between neighboring
pixels.
[24] The performance of the estimators is shown more

comprehensively in Figures 5 and 6, which plot the bias
and standard deviation of both estimators as a function
of a. The text above each plot indicates the pixel (see
Figure 1b). The radar is located at the bottom, between
the two center pixels ((2,1) and (3,1)). The performance of
the inversion is highly dependent on the geometry (i.e., the
LOS direction vectors in row (pixel) j of A). Inversion
demands that the direction cosines be dissimilar. Other-
wise, not enough independent information is present to
recover the cross‐range component.

Figure 3. Method A (field magnitude constraint). Estimates of the simulated velocity field for
three values of a.
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[25] In each plot, the three velocity components are
represented by different colored/styled lines (see legend).
The bias and standard deviation are computed via Monte
Carlo simulation. In both cases, the field‐parallel bias
(red) is essentially zero, regardless of a. The exception is
in pixels (3,2) and (4,3), which fall on the discontinuity
(see Figure 3). For low a both estimators handle this
violation of the uniformity assumption by estimating a
very large field‐parallel component. There is a significant
southward bias (green) in pixel (3,4) in Method A that is
not present in Method B. For a > 2, Method B exhibits
more bias in the zero‐flow region. This is particular to the
phantom velocity field and results from the divergence
operator’s wider support. Method A resolves the zero
region better, but this is because it favors the zero solu-
tion. In the nonzero region, the solution is very poor (see
Figure 3c). In general, we see the trend that as more
regularization is applied (a increases), the standard devia-
tion of the estimator decreases while bias increases. Com-
pared to Method A, in regions of uniform flow (farther
from the discontinuity, e.g., pixel (3,4)),MethodB reduces
bias at the expense of error variance.
[26] The above discussion addresses the estimates in

each pixel separately, but not the correlations between
pixels. Figure 7 shows error ellipses for Methods A and B
and regularization parameter value a = 15. The width of
the ellipse indicates the variance of the estimator in each
component (only horizontal components pe and pn are
considered). The eccentricity indicates that one compo-
nent is better represented by the measurements. The angle
indicates correlation between the two errors and is roughly
aligned such that the error in the transverse direction is
greater than the line‐of‐sight component. The semiminor
axis generally points toward the radar (i.e., the line‐of‐
sight component is better represented by the data), while the
semimajor axis indicates less accuracy in estimating the

transverse component. Although both the measurements
and noise are uncorrelated, the estimates (and therefore the
errors) become correlated through the inversion operation.
As before, the performance is geometry‐dependent: those
estimates farthest from the radar (top row) incur the largest
errors for two reasons: first due to the range dependence
of R, second since fewer samples fall within these pixels
(see Figure 1b). The semimajor axis is wider for Method
B (solid lines) because of its wider support; the error
covariance is greater because the estimate in each pixel is
constrained by local measurements as well as data from
its neighbors.
[27] Figure 8 shows the L curves for this simulation.

The L curve is a semiquantitative strategy for selecting an
optimal level of regularization. The vertical axis is a
measure of the side constraint (in this case the l2‐norm of
the divergence of v̂). The horizontal axis is a measure of
how well the estimate fits the data. The curve is plotted
for a range of a to characterize the trade‐off between
smoothness (vertical axis) and data fit (horizontal). Closer
to the origin is better. This curve typically takes the shape
of the letter “L.” The vertical segment corresponds to low
a, where data fit takes priority over smoothness. In this
regime, increasing a results in a smoother estimate that
is still consistent with the data. In the horizontal segment,
a has less effect on the smoothness of the solution
but results in an ever more inconsistent estimate. The
“optimal” a lies between these two extremes, at the knee
of the curve if such a point can be identified.
[28] The smoothness metric in Figure 8 for a given a is

lower (i.e., better) for Method B while the data fit is
consistently better. The knee of the curve is more easily
identifiable for Method A at a ≈ 15. This value is later
used in comparisons to make qualitative assessments of
estimator performance versus a.

Figure 5. Effect of varying the regularization parameter a, Method A: (a) bias and (b) standard deviation. Thin lines
represent the diagonal elements of (6).

Figure 4. Method B (incompressible flow constraint). Estimates of the simulated velocity field for
three values of a.
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Figure 5
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Figure 6
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[29] In the discussion above we justified using the field
shown in Figures 3 and 4. This was motivated by a
particular phenomenon that is expected to occur in the
ionosphere during substorms. The advantage of spatial
regularization is that it provides robustness in the presence
of spatial variation. Hence we now consider two variations
of the earlier pattern: a uniform field v(x, y) ≡ v (see
Figure 9) and a very thin enhancement with oppositely
directed velocity on the other side of the arc (see Figure 10).
Figures 9b and 9c and Figures 10b and 10c (Figures 9d
and 9e and Figures 10d and 10e) show a pair of esti-
mates using Method A (Method B) for both low and high
values of a.
[30] Figures 9a and 10a show the L curves for each of

these cases. Some general observations can be made per-
taining to both cases. As before, Method A reaches a point
of diminishing returns when it begins to emphasize
smallness over data fit. The L curve levels to horizontal
and the estimated field approaches zero. By comparison,
the L curve for Method B is closer to the origin for all
values of a.
[31] The uniform field (Figure 9) presents no challenge

for either estimator, since this is an important assumption

in its design. But when the regularization “kicks in,”
Method A defeats itself by approaching the zero field.
Perhaps more importantly, the “shrinking” in Method A
dramatically alters the direction and overall shape of the
flow pattern. It is this overemphasis of the side constraint
that leads to the horizontal segment of the L curve. By
comparison, Method B preserves the uniform direction
of v̂ for all a, and the L curve is practically vertical.
[32] Turning now to the shear flow case (Figure 10),

the discontinuity is even more difficult to resolve than the
step function considered previously. Though reconstruc-
tion errors do extend beyond the position of the disconti-
nuity (again due to the relatively wide support of the
divergence operator), both methods perform best where
the underlying fieldmatches the assumption of uniformity.
In particular, the top row of estimates is nearly perfect.
Around a = 15 (Figure 10e), Method B comes closest to
the true field. For higher values (not shown), the solution
begins to approach something like solenoidal flow (i.e.,
the ideal solution if r · v = 0 exactly). Hence the knee
(albeit slight) located around a = 15 in Figure 10a. The
differences in the L curves for this case are not as dramatic,
but the same general observations apply: Method B per-
forms better, i.e., it is consistently both smoother and a
better fit to the observed data.

3.2. Case Study: 24 March 2009

[33] In an experiment run 24 March 2009, PFISR was
operated in the 26‐beam mode of Figure 1a. The full
array of 26 beams (“frame”) was sampled every 5.5 s,
during which time returns from 14 uncoded 480ms pulses
were acquired in each direction on each of two inter-
leaved frequency channels. The auroral activity of this
night generated returns with high SNR, allowing esti-
mates of LOS velocities from few samples.
[34] The results described in this section were obtained

during a 1 h period using integrations of 30 s, corre-
sponding to ∼140 pulses per beam. Values for the diagonal
matrix R were supplied by the same the nonlinear fitter
that generated the LOS estimates. The velocity fields were
constructed using Method B with a regularization param-
eter of a = 5. This value was chosen based on trial and
error. Although the step function in the above simulations
was considered realistic, it is an idealized “high‐pass”
phenomenon that rarely occurs exactly as presented. So it
is more prudent to “tune” the estimator to emphasize data
fidelity (i.e., lower a) rather than to risk oversmoothing.
[35] The estimated velocity fields were superimposed

on optical images captured by a collocated digital all‐sky
camera. The camera captured both 557.7 nm and 630 nm
wavelengths, but only the 557.7 nm data is displayed in

Figure 7. The 1 − s error ellipses. Dashed lines give
the error for Method A. Solid lines give the error for
Method B. The units are m/s.

Figure 6. Effect of varying the regularization parameter a, Method B: (a) bias and (b) standard deviation. Thin lines
represent the diagonal elements of (6).
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Figures 11–13. At a cadence of 20 s, the all‐sky imager
captures dynamics with timescales comparable to those
captured by the radar reconstructions. The velocity fields
and auroral images were coregistered assuming an
auroral emission altitude of 120 km.
[36] Figure 11 shows 4 contiguous 30 s flow fields

estimated in the vicinity of a stable east‐west aligned arc
of ∼50 km width. Figure 11a shows a relatively uniform
flow in the magnetic westward direction, tangential to the
arc boundary. There is a reduction in the velocity magni-
tude within the arc, consistent with a reduced electric field
within the region of increased conductivity. Figures 11b
and 11c depict the development of a flow reversal near
the poleward boundary of the arc. The circulatory
appearance of the flow field is reminiscent of Figure 10c.
It is most likely an artifact of applying regularization to a
flow shear extending beyond the region of observation.

The actual flow shear is probably similar to the phantom
flow field in Figure 10. In Figure 11d, the uniform
westward flow is recovered. Figure 12 gives a second
example of a rapid (<30 s) development of a large flow
shear in the vicinity of a preexisting auroral form. In this
case, the morphology is clearly undersampled in time, as
the reversal appears only in Figure 12b.
[37] Such rapid fluctuations were commonly observed

throughout this observing period. Figure 13 shows a
longer sequence of 30 s flow fields during a period of
somewhat more dynamic auroral activity. Although the
correlation with auroral boundaries is less clear, we again
see large fluctuations in both magnitude and direction of
flow, as well as the ephemeral appearance of strong
flow shears, throughout. Rapid localized fluctuations in
convective flow have been identified by Bristow [2008]
using the SuperDARN HF radar network. Their cause

Figure 8. L curves for Methods A and B for the ground truth (cyan) velocity field pattern in
Figures 3 and 4. Data fit metric is on the horizontal axis. Smoothness metric is on the vertical axis.
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Figure 10. Shear with field reversal. (a) L curve for Methods A and B. Sample reconstructions for
both methods are shown: (b and c) Method A and (d and e) Method B.

Figure 9. Uniform flow field. (a) L curve for Methods A and B. Sample reconstructions for both
methods are shown: (b and c) Method A and (d and e) Method B.
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remains unclear, and will be the subject of future work
with these measurements.

4. Discussion
[38] We have demonstrated the capability of an elec-

tronically steerable ISR to resolve F region flow fields. In
order to achieve robustness in the presence of spatial
variation, we chose to implement regularization in the
solution. In our analysis we compared the performance
of two regularization functionals: Method A, with a
penalty on large‐magnitude solutions, and Method B, the
“incompressible flow” estimator with a penalty on local
spatial variability.
[39] Both estimators have trouble resolving a sharp dis-

continuity, such as that seen in the simulation of section 3.1
(Figures 3 and 4). Both perform well in regions of uniform
flow, with Method B having a slight advantage (Figure 6a,
pixel (3,4)). For large values of the regularization param-
eter a, Method A invariably approaches the zero field and

dramatically alters the general “shape” of the solution.
Method B enforces uniformity (locally) or approaches the
solenoidal solution (globally). Whether or not these solu-
tions are realistic depends on the spatial variability of the
process under observation. It is crucial to consider the
effect of the regularization parameter a on the analysis,
whether it causes oversmoothing (Figure 10e), and whether
artifacts appear as a result of the violated assumption of
uniformity (Figures 10b and 10d).
[40] The accuracy of the velocity reconstruction depends

heavily on the geometry of the problem. Hence each pixel
is characterized by a unique error profile. See Figures 5–7.
[41] In applying the estimation technique to PFISR

measurements, we validated our findings by comparing to
a sequence of coregistered all‐sky optical images from the
same night. The optical data were captured at a similar
timescale to the radar integration time, so the dynamics
observed have a similar time resolution. Themost important
features of these data are the reduction of convective flow
within an auroral enhancement [de la Beaujardière and

Figure 11. Coregistered ion convective flow fields and auroral forms constructed at 30 s cadence.
Figures 11b and 11c illustrate the formation of a transient region of reversed flow near the poleward
boundary of the arc.

Figure 12. Another example similar to Figure 11.
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Figure 13. A longer sequence illustrating the relationship between flows and auroral forms.
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Vondrak, 1982] and the convection’s being generally
parallel to the arc boundary, consistent with an electric
field directed toward the arc [e.g., Lanchester et al., 1996].
[42] The Tikhonov formulation adopted above is advan-

tageous for a variety of reasons. It is capable of handling
the overdetermined problem. A smoothness constraint
may be introduced by penalizing large local differences in
the solution. Through the covariance matrix, the estimator
accounts for the uncertainty inherent to all practical
measurements. If something is known about the statistics
of both the data and the prior model, the estimator also
provides a measure of uncertainty in the form of the
covariance matrix Sx̂.
[43] To emphasize the novelty of this approach, it is

worth comparing the acquisition and estimation procedure
presented here to another method capable of estimating
three dimensional F region ion convection. The tristatic
EISCAT system receives three independent line‐of‐sight
projections of ion flow velocity within a common volume.
This allows unambiguous recovery of all three velocity
components within the volume. PFISR is a monostatic
radar, and the recovery of vector velocity requires the
combination of neighboring measurements as described
above. Although EISCAT is routinely operated in a
meridional scanning mode that provides estimates along
latitude, PFISR’s electronic steerability allows acquisition
of a “snapshot” as described in section 1. The monostatic
arrangement is inherently unable to resolve the full flow
vector due to the limited amount of independent infor-
mation provided by neighboring measurements. The only
way to resolve this ambiguity is by introducing outside
information. The Tikhonov method of regularization is a
natural way to incorporate such information.
[44] Exogenous information may come in the form of a

physical model, e.g., a statistical model [Sulzer et al.,
2005; Hysell et al., 2009]. It may also include ancillary
data from separate instruments (i.e., sensor fusion). For
instance, if there is a reason to believe the direction of
ion flow is dominated by large‐scale convection (e.g., if
SuperDARN measurements indicate such a large‐scale
flow), the solution can be “steered” to a preferred direction
to make use of this assumption. The solution is encoded
with a directional preference by designing the a priori
covariance matrix Q such that the horizontal variabilities
spe
2 and spn

2 reflect confidence in the estimate of the
respective components.
[45] In this work, we have used coregistered optical

images to provide a context for interpreting the results.
The optical brightness serves as a proxy for conductivity.
Wherever an auroral arc occurs, the conductivity is higher.
In order to maintain current continuity, the electric field
in this region (and thus the drift velocity) is reduced.
After identifying the arc boundary in the optical data,
this can be used by the estimator to segment the solution
into regions with different prior constraints. For instance,

since we expect the plasma flow at the boundary of an
auroral arc to be parallel to the arc, we may tune the prior
model to steer the solution in the appropriate direction.
Rather than to perform this tuning by hand for each
image, such contextual information could be provided to
the estimator and automatically applied to its results.
[46] A notable feature of Figures 5 and 6 is the spatial

inhomogeneity of the error covariance. This is unavoidable
due to the poorly sampled nature of the pixelization in
Figure 1b. That is, the measurement sample points are
determined by the radar geometry, and we have laid a
uniform 4 × 4 grid over these sample points. As a result,
some pixels contain more measurements (i.e., better
statistics) than others. The velocity estimates in those
pixels are more reliable than the poorly sampled top row of
pixels. A nonrectangular basis expansion in the dis-
cretization may resolve this statistical variability.
[47] Even when the pixelization accommodates the

radar geometry, the assumption of uniformity within each
pixel is in opposition to the goal of resolving spatial
variability. The optics‐assisted segmentation mentioned
above is an example of adaptive pixelization. In the
simulation in section 3.1, the optimal pixelization would
be two triangular pixels separated by the boundary
indicated in Figures 3 and 4. A single velocity estimate is
recovered for each pixel using all the measurements
within that pixel.
[48] Yet another discretization scheme is ideal for F

region drift patterns. In the auroral zone, there is often a
uniform background convection superimposed with var-
iations from ionospheric phenomena. The physical system
is thus amenable to a multiscale basis expansion, such as
Haar or another wavelet basis.
[49] The formulation of the estimation as an optimiza-

tion problem is a common approach to regularization, and
a multitude of strategies have been established to solve
such problems. We have assumed Gaussian models and
l 2 norms, which leads to a solution that is a linear com-
bination of the data. Modification of (3) (for instance,
using non‐Gaussian statistics or an l1 norm) results in
other solutions, which are nonlinear and more difficult to
obtain but potentially better suited to the problem.

[50] Acknowledgments. This material is based upon work
supported by the National Science Foundation under grants DGE‐
0221680, ATM‐0538868, and ATM‐0547934. The authors are grateful
to Donald Hampton for providing the optical data used in this work.
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