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Abstract An algorithm has been developed to image the local structure in the convection electric
field using multibeam incoherent scatter radar (ISR) data. The imaged region covers about 4◦ in magnetic
latitude and 8◦ in magnetic longitude for the specific geometry considered (that of the Poker Flat
ISR). The algorithm implements the Lagrange method of undetermined multipliers to regularize the
underdetermined problem posed by the radar measurements. The error on the reconstructed image is
estimated by mapping the mathematical form to a Bayesian estimate and observing that the Lagrangian
method determines an effective a priori covariance matrix from a user-defined regularization metric. There
exists a unique solution when the average measurement error is smaller than the average measurement
amplitude. The algorithm is tested using synthetic and real data and appears surprisingly robust at
estimating the divergence of the field. Future applications include imaging the current systems surrounding
auroral arcs in order to distinguish physical mechanisms.

1. Introduction

Advanced Modular Incoherent Scatter Radar systems are monostatic radars capable of beam steering
on a pulse-to-pulse basis [Kelly et al., 2009]. With typical interpulse periods in the range 1–10 ms, inco-
herent integration over tens of seconds or minutes means that measurements from different look direc-
tions (or beams) can be considered simultaneous. These systems were developed in order to achieve
spatial resolution in the horizontal directions. However, the spatial sampling associated with the mono-
static configuration is incomplete and highly irregular so that some sort of algorithm is required to
form an image of the physical quantities of interest. In this work, we develop an algorithm for imag-
ing the two-dimensional electric field distribution based on line-of-sight (LOS) velocities measured by a
multibeam radar.

Incoherent scatter radars (ISRs) are capable of inferring electron density, electron temperature, ion temper-
ature, and LOS velocity from the backscattered signal. (Additional parameters can sometimes be inferred as
well.) This is typically accomplished by fitting a theoretical autocorrelation function through a finite num-
ber of complex “lag products” formed from the backscatter, which constitute measurements (weighted by
some ambiguity function) of points on the autocorrelation function [Dougherty and Farley, 1960]. Imaging
the scalar parameters (density and temperature) amounts to a resampling of the measurements in space,
with nontrivial interpolation, so that results can be inferred from the imaged products. Previous efforts in
this regard include Nicolls et al. [2007], who imaged polar mesosphere summer echoes, Semeter et al. [2009]
who imaged auroral forms, Nygren et al. [2011] who used stochastic inversion, and Dahlgren et al. [2012] who
imaged polar cap structures.

In this work, we consider the more difficult problem of imaging vector quantities, in particular the electric
field. Imaging the vector electric field is more difficult because the radar does not measure the full electric
field vector, even at a single point. Rather, the radar measures the LOS velocity, which provides only the
component of the electric field in the direction perpendicular to the beam (and to the geomagnetic field,
B0). Information on the other component exists only in measurements from other beams, which are not in
the same location. Hence, inferences with respect to the vector electric field can only be made by way of
some assumption with respect to the way that the electric field varies in space. For example, Butler et al.
[2010] and Semeter et al. [2010] assumed that the electric field did not vary in certain predefined regions
of size large enough so that two components of the electric field could be inferred from the collection of
LOS velocity measurements in the regions. Their results for the electric field around an auroral arc are very
intriguing and provide motivation for our effort.
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The approach we take is based in the concept of regularization [e.g., Neumaier, 1998]. The radar measure-
ments contain information about the vector electric field, but they do not completely specify it at any
location. There is a multidimensional solution space of possible electric field distributions consistent with
the measurements, and it is necessary to introduce some additional assumption or information that iden-
tifies a single solution from within the solution space. We attack this general regularization problem by
framing it as a problem in constrained minimization, which can be solved using the method of Lagrange
multipliers [e.g., Goldstein, 1980; Boyd and Vandenberghe, 2009]. The constraint that we impose is that the
reconstructed electric field reproduces the LOS velocity measurements with allowance for the measure-
ment error. Among the electric fields that satisfy this constraint, we identify the unique one that minimizes
a measure of curvature and absolute gradient. The definition of this measure constitutes the additional
assumption necessary to determine a unique solution.

In section 2.1, measurement of the LOS velocities is discussed and notation is defined for relating the LOS
velocity to the components of the vector-valued flow velocity parallel and perpendicular to the geomag-
netic field (B0). In section 2.2, a linear forward model is defined appropriate for regularized solution. In
section 2.3, a uniform background flow solution is defined, which contains our estimate for the parallel to
B0 component. In section 2.4, the method of Lagrange multipliers is formulated and solved in terms of a
regularizing measure defined as a general 2-norm. In section 2.5, our specific choice for the regularizing
measure is defined, and the condition for existence and uniqueness of the vector electric field solution
is formulated. In section 3.1, the performance of the algorithm is investigated using synthetic data. In
section 3.2, the performance of the algorithm is investigated using data from the Poker Flat Incoherent
Scatter Radar (PFISR).

2. Estimating the Vector Electric Field
2.1. Line-of-Sight Velocity Components
There are several “classical” ways of estimating LOS velocity from the incoherent scatter spectrum. Funda-
mentally, the LOS velocity corresponds to the Doppler shift of the spectrum, and a spectral moment method
or a fit to the phase angle can both be used [e.g., Skolnik, 1980]. However, for asymmetric (noisy) spectra
these methods may introduce biases. In our general analysis, we estimate the LOS component of the veloc-
ity from a fit to the full incoherent scatter autocorrelation function (including both the real and imaginary
parts). Errors on the fit are evaluated by estimating the Jacobian at the output parameter value.

We will assume that the electric field maps along B0 without attenuation. Hence, the LOS velocity mea-
surements and our results for electric field can be understood as applying to whole magnetic field lines.
However, the LOS velocity measurements are subject to range ambiguity that depends on the type of
pulse coding. Roughly speaking, this means that the measured velocity is actually an average over some
“resolution” distance along the LOS, which corresponds to a resolution in the direction transverse to B0 that
depends on the LOS angle with B0. If a simple, uncoded long pulse is used, the resolution could be poor
enough to warrant compensation by altering the way data are mapped to the grid in what follows. The data
could be spread over regions that reflect the varying transverse resolution. However, we have elected not
to introduce this complexity and instead consider each LOS measurement as applying to the center of its
ambiguity range.

Consider the local vector ion velocity written in terms of the perpendicular eastward, perpendicular
northward, and antiparallel components with respect to B0,

v = [v⊥e v⊥n v∥], (1)

and for convenience define notation for its decomposition into perpendicular and parallel vectors:

v⊥ = [v⊥e v⊥n 0], v∥ = [0 0 v∥]. (2)

Similarly, define Ai, the unit vector in the direction of the ith beam, along with its decomposition into
parallel and perpendicular vectors:

Ai = A⊥i + A∥i

A⊥i = [A⊥e,i A⊥n,i 0]
A∥i = [0 0 A∥]. (3)
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We will sometimes refer to Ai as the ith measurement vector. Following Heinselman and Nicolls [2008], an
LOS component velocity measurement ṽlos,i , which is the LOS component velocity vlos,i measured with error
ei, can be written as

ṽlos,i = vlos,i + ei = Aivi + ei = A⊥iv
†
⊥i + A∥iv

†
∥i + ei, (4)

where we use matrix notation for the inner product by considering spatial vectors to be 1 × 3 matrices, with
superscript † indicating the transpose operation (i.e., a ⋅ b = ab†). This matrix notation will be exploited
below to fold vector operations into matrix equations. The subscript i on vi , v⊥i , and v∥i indicates that these
are the velocities at the location of the ith measurement. Throughout this paper the superscript ⋅̃ refers to a
measured quantity and the superscript ⋅̂ refers to an estimated quantity.

2.2. Forward Model
Our goal is to estimate a two-dimensional electric field vector perpendicular to the geomagnetic field, i.e.,
E(x, y) where x and y are the two spatial coordinates. In doing so, we will also estimate the parallel com-
ponent of the flow velocity, v∥, but will assume that this quantity is spatially uniform. This latter criterion
is a necessary one given the practical limitations of a monostatic radar and the expected relatively small
contribution from the parallel motion. However, for certain types of ion upflow events the parallel veloc-
ity might have sufficient local enhancements to warrant reconsidering this decision, although this would
introduce significant additional complexity. For the present work we begin the process of estimating a
two-dimensional flow field by decomposing the problem into a background uniform flow field (which will
contain the parallel component) and a spatially varying perturbation field.

The forward model with spatial dependencies explicitly defined can thus be written as

v(x, y) = v0 +
𝛿E(x, y) × B|B|2

(5)

where v0 = v⊥0+v∥0 is some uniform “background” flow. In writing this equation, we assume that the vector
ion drift is related to the electric field through the relation,

v⊥(x, y) =
E(x, y) × B|B|2

= v⊥0 +
𝛿E(x, y) × B|B|2

, (6)

which gives rise to the term “convection electric field.”

In developing our approach, we considered including a constant electric field gradient in v0, out of concern
that the regularization methods defined below may not be optimal for reproducing gradients. Although
our method does not specify a fixed boundary, it will perform best when the actual boundary is relatively
uniform. However, it turns out that estimation of a constant gradient solution is poorly conditioned, at least
for the monostatic radar configuration. Estimating a gradient amounts to estimating a wavelength much
longer than sampling region, which is difficult due to the usual Fourier limitations.

The next step is to write the perpendicular, spatially varying electric field as the gradient of a potential
function, 𝜙(x, y),

𝛿E(x, y) = −∇𝜙(x, y), (7)

where 𝜙(x, y) is the electric potential. In writing this equation, we are assuming that the electric field is elec-
trostatic. This approach amounts to assuming that the divergence of the E × B flow field, ∇ ⋅ v⊥, is zero or
that the F region ionosphere is incompressible.

With a measurement ṽlos,i defined as in equation (4), we can write the forward model as

ṽlos,i = Aiv
†
0 − Ti∇†𝜙(xi, yi) + ei, (8)

where Ti = (B × Ai)∕|B|2. The last term can be understood through the vector identity

−Ti∇†𝜙(xi, yi) = Ti ⋅ 𝛿E(xi, yi) = (B × Ai) ⋅ 𝛿E(xi, yi)∕|B|2 = Ai ⋅ (𝛿E(xi, yi) × B)∕|B|2,

and referring to equations (4) and (5). We assume that the covariance matrix of the measurements, C, is also
known. This matrix is typically assumed to be diagonal with variance 𝜎2

i , where 𝜎i is the standard deviation
of the measurements derived through the spectral fitting process, as mentioned in section 2.1.
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2.3. Uniform Velocity Estimate
By writing the forward model as the sum of a constant-flow solution and the gradient of a potential function,
as in equation (5), we are able to treat the problem in two steps. We first estimate a solution to the mea-
surements assuming a constant-flow field and then solve for the remaining spatially varying field. With a set
of N measurements, we can define matrices

ṽlos =

⎡⎢⎢⎢⎢⎣
ṽlos,1

ṽlos,2

⋮
ṽlos,N

⎤⎥⎥⎥⎥⎦
, e =

⎡⎢⎢⎢⎢⎣
e1

e2

⋮
eN

⎤⎥⎥⎥⎥⎦
. (9)

The linear model for the uniform flow solution can then be written as

ṽlos = Av† + e, (10)

where measurement matrix A is size N × 3 with rows corresponding to Ai . We define v0 as

v̂0 =
(

A†C−1A
)−1

A†C−1ṽlos, (11)

which is the maximum likelihood estimate for v given the assumption of a uniform flow field obeying the
linear model. The parallel component has been retained so that v̂0 contains our estimate for the parallel
ion velocity.

We use the prime superscript to denote the LOS velocities with the constant-flow portion removed, i.e.,

ṽ′
los = ṽlos − Av̂†

0, (12)

which we assume to be consistent with flow that is purely transverse to B0.

2.4. Electric Potential Solution
We would now like to estimate the spatially varying part of the electric field associated with the 𝛿E × B0

flow, v⊥ −v⊥0. We frame the problem as estimation of a potential function on the points of a fine grid, which
overlays the measured LOS velocities. From equations (8) and (12), the linear problem can be written as

ṽ′
los = M𝚽 + e (13)

where ṽ′
los is the N × 1 vector of measurements with errors e (N × 1) and 𝚽 is a vector of size M × 1 con-

taining the electric potential (𝜙) at each point on the grid. Consider a two-dimensional grid of size Mx × My

and then reorder the points such that 𝚽 is an M = (MxMy) × 1 column vector. The N × M “measurement
matrix” M realizes the operation −Ti∇† from equation (8) for all the LOS velocity measurements, with results
distributed along a column vector. Practically, M is formed from matrices that realize second-order accuracy,
central finite difference approximations for the derivatives in both dimensions (𝛁x and 𝛁y , both size M × M),
and multiplying these by N × M matrices (Tx and Ty) that perform the appropriate projections of the electric
field at the appropriate grid points; i.e.,

M = −Tx𝛁x − Ty𝛁y. (14)

For N measurements (i = 1, 2, ...,N) and a solution grid with M > N points, equation (13) poses an under-
determined linear problem with an M − N dimensional solution space for 𝚽. We need to choose a solution
from this solution space based on some reasonable criteria. To do this, we follow the Lagrangian method
described by Cosgrove et al. [2013], which was motivated by the maximum entropy method described by
Hysell and Chau [2006]. We seek the unique solution that extremizes the norm ‖𝚽‖2

G (i.e., 𝚽†G𝚽) for some
matrix G subject to the constraint imposed by equation (13) in addition to the constraint

‖e‖2
C−1 = N − 1, (15)

where, as already mentioned, C is the covariance matrix for the LOS measurements. The left-hand side of
(15) is known as the 𝜒2 parameter, which is a measure of the error in comparison to the expected error. For a
Gaussian probability distribution, N−1 is the most likely value for 𝜒2. Therefore, we can state our “reasonable
criteria” in words as follows: Among the set of solutions that achieve the most probable tightness of fit to
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the data, we choose the one that minimizes the norm ‖𝚽‖2
G. An alternative approach to constraining the

“total error” would be to constrain the maximum allowable deviation from individual data points. However,
this approach would be more sensitive to outliers which might be a significant problem.

Finding the solution just described is a problem in constrained minimization, which can be solved using
the method of Lagrange multipliers [Goldstein, 1980; Boyd and Vandenberghe, 2009]. The Lagrangian for the
problem is

 = ‖𝚽‖2
G + 𝝀

† (ṽ′
los − e − M𝚽

)
+ Ω

(‖e‖2
C−1 − N + 1

)
, (16)

where 𝝀 is an N × 1 vector of Lagrange multipliers and Ω is an additional Lagrange multiplier for the
constraint given by equation (15). The solution 𝚽 to the constrained extremization problem is found by min-
imizing the Lagrangian with respect to 𝚽, e, and the Langrange multipliers (simultaneously). It can be found
by forming the partial derivatives with respect to these quantities, setting them equal to zero, and solving
the resulting equations. Undertaking this results in the equations

�̂� =
(

M†C−1M + 𝛼G
)−1

M†C−1ṽ′
los (17)

0 = ṽ′†
los

(
C + 1

𝛼
MG−1M†

)−1 †

C
(

C + 1
𝛼

MG−1M†
)−1

ṽ′
los − N + 1. (18)

Equation (18) can be solved for alpha using a one-dimensional search algorithm. Once two values have
been identified that make the right-hand side positive and negative, respectively, the next trial value is
chosen half way in between, etc. With 𝛼 determined in this way, the estimate �̂� is found by performing
the matrix multiplication in equation (17). Note that equation (17) has the form of Tikhonov regular-
ization with parameter

√
𝛼. Hence, the Lagrangian method has provided a natural way to choose the

regularization parameter.

Interpreting equation (17) as a Bayesian estimate, we see that the term 𝛼G plays the role of the inverse of
the covariance matrix for the a priori probability distribution. Therefore, defining Σe by Σ−1

e = 𝛼G, the a
posteriori covariance matrix for the equivalent Bayesian estimate becomes

Σ̂𝚽 =
(

M†C−1M + Σ−1
e

)−1
. (19)

This interpretation allows us to estimate the errors on the electric potential. The electric field covariance
matrix can also be readily computed using standard matrix transformations, e.g.,

Êx = −𝛁x�̂�, Σ̂Ex
= 𝛁xΣ̂𝚽𝛁†

x . (20)

2.5. Regularization Matrix and Condition for a Unique Solution
As described above, among the solutions that achieve the most probable tightness of fit to the data, we
choose the one that minimizes the norm ‖𝚽‖2

G = 𝚽†G𝚽. Here we choose what quantity we want the norm
to evaluate. An illustrative choice for G is G = 𝚪†𝚪, where 𝚪𝚽 is a quantity that we intuitively feel should
be as small as possible in the mean squared sense. For example, if 𝚪 acting on 𝚽 produces the curvature of
the surface that Φ defines over the grid, then our solution would minimize the mean squared curvature. In
this case our solution for 𝚽 would be the smoothest possible, in a very real sense. However, more elaborate
choices for 𝚪 allow for tailoring of the solution in specific ways.

We consider a G composed of three components, one with norm equal to the sum of the squared elec-
tric field magnitudes (G0), the second with norm equal to the sum of the squared electric field absolute
component gradients (G1), and the third with norm equal the sum of the squared electric field component
Laplacians (G2):

G = aG0 + bG1 + cG2. (21)
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Specifically,

‖𝚽‖2
G0

=
M∑

i=1

(Exi)2 + (Eyi)2,

‖𝚽‖2
G1

⇒
M∑

i=1

(
𝜕Exi

𝜕x

)2

+
(
𝜕Exi

𝜕y

)2

+
(
𝜕Eyi

𝜕x

)2

+
(
𝜕Eyi

𝜕y

)2

‖𝚽‖2
G2

⇒
M∑

i=1

(
𝜕2Exi

𝜕x2

)2

+
(
𝜕2Exi

𝜕y2

)2

+

(
𝜕2Eyi

𝜕x2

)2

+

(
𝜕2Eyi

𝜕y2

)2

, (22)

where the double arrow replaces the equals sign in cases where derivatives are to be approximated by finite
differences. Hence, we have

𝚽†G𝚽 = a‖𝚽‖2
G0

+ b‖𝚽‖2
G1

+ c‖𝚽‖2
G2
,

and we can choose the weights as a function of position on the grid to determine what manner of regular-
ization we wish to impose in that area. In practice, we have chosen a = b = 0, c = 1 in the central area
of the grid where there is good support from the LOS measurements. However, outside of this area we have
chosen a = c = 0, b = 1. This gives a “minimum total curvature” interpolation of the electric field between
beams but forces the electric field to approach a single constant value far from the measurement region,
which eliminates the need to fix boundary conditions.

Each component of G is composed of a sum of matrices that implement the appropriate operator in the
appropriate direction and on the appropriate component. For example,

G2 = 𝚪†
mm𝚪mm + 𝚪†

nn𝚪nn + 𝚪†
nm𝚪nm + 𝚪†

mn𝚪mn (23)

where, for example, 𝚪nm𝚽 is a vector containing the finite difference approximations for
(

𝜕2Exi

𝜕y2

)
, for all i.

The form given for G in equation (23) ensures that G is positive definite. This allows us to show that the
right-hand side of equation (18) is monotonic in 𝛼. As 𝛼 → 0 the right-hand side of equation (18) approaches
1 − N, which is negative for N > 1. Therefore, there will be a unique solution to equation (18) if and only if
the right-hand side approaches a positive number as 𝛼 → ∞. Letting 𝛼 → ∞, we obtain the condition

ṽ′†
losC−1ṽ′

los − N + 1 > 0. (24)

Therefore, there will be a unique electric field solution associated with the LOS measurements ṽ′
los with error

covariance matrix C if and only if the condition in equation (24) is satisfied. The condition is not satisfied
when the errors become too large. On average, the errors on the LOS velocities need to be smaller than the
absolute LOS velocities. For example, in the case of a minimum curvature criteria (G = G2), excessively large
errors allow the 𝜒2 constraint to be achieved by a plane (zero curvature), after which further increase in
the errors provides for a family of planes that achieve the 𝜒2 constraint. In practice, we have found that the
solution occasionally becomes nonunique. However, this is very rare and simply indicates the condition that
the measurements are not of sufficient quality to find a unique solution.

3. Example Results
3.1. Examples With Synthetic Data
While we have demonstrated uniqueness of the proposed methodology, we must show that the assump-
tions are valid and able to reproduce expected two-dimensional electric field structures. In order to assess
the performance of the algorithm, we have generated synthetic electric potential patterns for a number of
scenarios, sampled the associated LOS velocities with various radar beam configurations, added represen-
tative noise to the measurements, and inverted the measurements using the methodology described. In
addition, we have explored a number of options for G using this simulation approach before converging on
the total curvature approach described in section 2.5. Here we present the results for three potential pat-
tern configurations: a zonally extended blob (i.e., extended normal with respect to the radar boresight), a
meridionally extended blob (i.e., extended parallel to the radar boresight), and a more complicated example
with two localized potential blobs, sampled with realistic measurement errors. These errors were based on a
polynomial fit to PFISR measurements and increase as range squared.

NICOLLS ET AL. ©2014. American Geophysical Union. All Rights Reserved. 1129
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Figure 1. (a–d) Magnitude, zonal component, meridional component, and divergence of the electric field for a zonally extended potential blob. (e–h) Estimated
fields using the methodology described in the text. (i–l) Difference between the true and estimated fields. In Figure 1a, the black dots correspond to where the
line-of-sight velocity was sampled. In all panels, the white border delineates a mask used for G; see text for details. Note that the color bars for the difference
panels are not the same as the ones for the actual and estimated full amplitudes.

Figure 1 shows the magnitude of the electric field (a), the zonal electric field (b), the meridional electric field
(c), and the divergence of the electric field (d) for the zonally extended potential blob, which also includes a
background meridional field. This case satisfies the zonal invariance assumption usually made for ISRs in the
auroral region so that, for example, the method of Heinselman and Nicolls [2008] would work well (except
that having made the assumption, there would be no way to know it was satisfied). Here x̂ is zonal (positive
eastward) and ŷ is meridional (positive northward). Reconstructed images are shown in Figures 1e–1h for
the same fields. In this case, we have sampled the true fields with measurement errors significantly smaller
(∼10 times) than the expected radar errors in order to demonstrate features of the algorithm. Line-of-sight
velocities were sampled at the black points shown in Figure 1a, which are derived from a true 41-beam
“imaging mode” used at PFISR (results of which are presented in section 3.2). The white border in all panels
represents the delineation of the measurement region inside of which there is good support from the LOS
velocity measurements and where we use a total curvature minimization (see section 2.5). Outside of this
region, a total gradient regularization is imposed that will force the solution to approach a constant value.
Finally, the differences between the true and reconstructed images are shown in Figures 1i–1l.

We can observe several features in the reconstructions:

1. The algorithm is able to reproduce the constant background meridional field, and the main features of the
zonally extended potential blob, mainly a negative to positive deviation in the meridional electric field
with increasing latitude, within the region supported by the measurements.

2. Outside of that region, the fields go to a constant value of electric field. This is the expected behavior
since in this region our choice of G (see section 2.5) will minimize the first derivative of the field and tend
toward a constant value in the absence of data.

NICOLLS ET AL. ©2014. American Geophysical Union. All Rights Reserved. 1130
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Figure 2. For the case of Figure 1. (top) Line-of-sight electric fields, concatenated for all beams: true values (black),
measured values (blue), background field solution (green), and two-dimensional solution (red). (bottom) Measured
line-of-sight electric fields with estimated background field subtracted (blue) along with the forward model fits from the
two-dimensional solution (red).

Figure 3. Same as Figure 1 for a meridionally extended potential blob.

NICOLLS ET AL. ©2014. American Geophysical Union. All Rights Reserved. 1131
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Figure 4. Same as Figure 1 for a two-blob case.

3. Toward the edges of the measured region, there is a transition between the part of the image that is
well supported by the measurements and that where the regularization is dominant. This results in the
appearance of curved features in the residuals and overall degraded performance with respect to the
true image.

4. The fact that the reconstruction produces finite-sized blobs means that artificial Ex will appear to enforce
the curl-free condition. These artifacts are seen toward the edges of the imaged region. However, they are
small as compared to the overall magnitude of the electric field structure (note the different color scales
on the Ex and Ey panels).

5. The main features of the electric field divergence are captured well; that is, a positive divergence peaked
where the meridional electric field perturbation crosses zero and a negative divergence on either side.
The magnitude of the electric field structure is also represented well.

To investigate the LOS velocity reconstructions, in Figure 2 we show the LOS-equivalent electric field and
its reconstruction, concatenated for all beams. Figure 2 (top) shows the total LOS measurements, whereas
Figure 2 (bottom) shows the LOS measurements after the background field estimate has been removed
(i.e., these are the measurements that are used in the two-dimensional inversions). The final reconstruction
(red) is in excellent agreement with the measurements (blue), which are in turn very close to the true values
(black) for these small error levels. The background field shown in green captures the largest-scale variation.
After removal of the background field, the residuals shown in the Figure 2 (bottom) illustrate the robust
reproduction of the measurements using the two-dimensional algorithm.

In Figure 3 we show an example of a meridionally extended potential blob (combined with a constant back-
ground Ey field), again with small measurement errors, in the same form as Figure 1. The blob results in
an meridionally extended structure in Ex which has a zero crossing in the zonal direction. Because of the
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Figure 5. Same as Figure 4 with realistic measurement errors.

geometry of this problem, the flow velocity structures are mostly aligned with the orientation of the beams.
As a result of this alignment, there are significant residuals after subtracting the background field as com-
pared to the errors, which allow for robust reconstruction of the fields. Indeed, as shown in Figure 3, the
reconstructions capture the main features of the fields and of the divergence, with some minor artifacts in
Ey associated with the finite size of the reconstructed blobs.

As a more complicated example, Figures 4 shows a case with two small potential blobs, again sampled with
small measurement errors. For this idealized case, the reconstructions are once again quite robust, with,
in general, excellent reproductions in the main features of the electric field, its divergence, and its magni-
tude. For the same potential pattern, Figure 5 shows reconstructions with more realistic errors on the radar
measurements (factor of 10 larger than in the previous cases), which are representative of typical ISR appli-
cations. A smooth reconstruction is produced that captures the essence of the electric field structures, while
underestimating their magnitude. While this is only a single realization of the measured fields, the results are
similar to the smaller error case with the main differences being (a) that some small artifacts have appeared
in the reconstructions, most visible in the residuals, and (b) that the reconstructed features are smaller in
magnitude. The artifacts are due to the particular realization of noise and thus we would expect that these
features would be somewhat random in nature. The depressed magnitude is most visible in the Ey field of
the higher latitude blob, a result of (a) the radar being least sensitive to the ŷ component of the electric field
and (b) the errors increasing with distance from the radar. “Muted” features are a general feature of our sim-
ulations with realistic measurement errors. They are the result of the fact that more emphasis will be placed
on the a priori information in these cases, which minimizes curvature. Because our algorithm enforces a con-
straint on the total error rather than on the error for any single measurement, it is perfectly allowable that as
the errors get larger, the algorithm might choose a solution that deviates from any given measurement by a
value larger than what one might expect due to its individual error. The LOS measurements for the two cases
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Figure 6. LOS measurements in the same form as Figure 2 for (top) small measurement errors and (bottom) realistic
measurement errors.

are shown in Figure 6. In the realistic error case, it is quite impressive that the algorithm is able to reproduce
features which are not that visible to the human eye with the significant uncertainties.

As discussed in section 2.4, the algorithm presented here also allows for an estimate of the a posteriori
covariance matrix of the potential function, which can be propagated to estimate errors on the electric field.
Errors on Ex and Ey are shown for the simulations with small and realistic measurement errors in Figure 7. The
errors are smallest in the region of measurement and increase outside of that region. Outside of that region,
they are completely determined by G as shown in equation (19). Because of this, we should not expect errors
in this region to have any practical meaning, as we do not expect our a priori information to be valid in that
region. In practice, we would simply not use imaging results outside of the measurement region. Inside the
measurement region, the errors will be determined by both G−1∕𝛼 (the a priori covariance matrix) and C
(the measurement covariance matrix) with the relative contribution depending on the level of errors and
the value of 𝛼. That is, if a very smooth solution is chosen, 𝛼 will be large, and the error will be dominated
by the measurement error. In the example shown, the output errors have increased by a factor of ∼10, indi-
cating that a large enough 𝛼 has been found (smooth enough solution) for the errors to be dominated by
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Figure 7. (a–d) Errors on the estimates for the small error case of Figures 4a and 4b and the larger error case of Figures 5c
and 5d. Note that the color scale changes by an order of magnitude from the two examples.

the measurement errors. Most of the artifacts in the images (see Figure 5) are smaller than the errors on the
fields. The errors on Ex show structuring that mimic the sampling of the beams, a result of the fact that the
beams are nearly aligned with the direction of the E × B flow leading to good estimates of that component
of the electric field where the field is sampled. Ey , on the other hand, shows errors that increase with latitude
presumably due mainly to the errors increasing with range squared.

We have presented results for extended blobs and localized blobs. Localized features confined to the field of
view are more easily reproducible by the algorithm. In general, long-wavelength structures as compared to
the measurement region will be poorly reproduced. As discussed earlier, this makes challenging the case of
simple gradients, for which other approaches such as boundary specification using other data sources may
be necessary. Finally, a general feature of the simulations is that the magnitude and divergence are fairly
well produced, perhaps better than the fields themselves. The algorithm appears to be surprisingly good
at estimating electric field divergence, which is somewhat surprising given that those quantities depend
on derivatives.

3.2. Examples With Real Data
Figure 8 shows two examples of imaging results for Ex and Ey from PFISR using the same 41-beam imag-
ing mode used in section 3.1. From equation (24), the existence and uniqueness of the solution does not
depend on the number of beams (as long as N ≫ 1), and the choice of beam configuration constitutes
a trade-off between temporal and spatial resolutions. In making this choice it should be considered that
the imaging algorithm balances the information in nearby data points so that temporal resolution may not
be much degraded by replacing a single beam with two, even though each has half the averaging period
of the single beam. However, because the ISR spectral fitting process used to extract the LOS velocities is
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Figure 8. Two examples of comparisons of PFISR LOS velocity with the produced image. (top row) Ex , (middle row) Ey ,
and (bottom row) the LOS velocity for each beam and range gate, as a function of magnetic latitude and longitude.
The jagged blue enclosures delineate the regions with measurement support, where the curvature is used for regulariza-
tion. Outside the enclosures the gradient is used for regularization so that the solution approaches a constant far from
the measurements.

nonlinear, the effect of increasing the number of beams cannot be evaluated using linear methods. At
present, the choice of 41 beams is one of judgement, for the purposes of example.

The two examples are shown in the left and right columns of Figure 8. Figure 8 (bottom row) shows scatter-
plots of the LOS velocities measured by the individual beams. Flow across the radar’s boresight manifests
as negation of the LOS velocity across the boresight, which is evident in some areas. These areas correspond
to an electric field along the boresight, which is aligned with the magnetic meridian (ŷ). The Ey components
are shown in Figure 8 (middle row). An LOS velocity signature that does not reverse across the boresight
is associated with flow along the boresight and indicates an electric field in the zonal direction (x̂). A zonal
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Figure 9. Two examples of comparisons of PFISR LOS velocity error and beam pattern with the error estimate produced
for the image. (top row) Error on Ex , (middle row) error on Ey , and (bottom) the LOS velocities for each beam and range
gate, as a function of magnetic latitude and longitude, where the marker size is inversely proportional to the measure-
ment error. The jagged blue enclosures delineate the regions with measurement support, where the curvature is used
for regularization. Outside the enclosures the gradient is used for regularization.

electric field is less common in nature and is not very evident in these examples. The Ex components are
shown in Figure 8 (top row).

The imaging algorithm is tasked with assembling the LOS velocity information in the distributed beams
in order to determine the direction of flow at each point in the image and hence distinguish between
Ex and Ey . Through the minimum curvature criteria, the algorithm emphasizes data points with a consistent
spatial distribution and, to the extent that the measurements have error, deemphasizes disparate points.
Examination of Figure 8 shows the algorithm at work on real measurements. Regions of localized auroral
arc-like fields (enhanced Ey) are observed in both examples, and indeed, these correlate well with optical
images (not shown, and will be explored in future studies).
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Figure 9 shows the error estimated for the images in Figure 8. In Figure 9, the marker size for the LOS veloc-
ities (bottom row) is inversely proportional to the measurements error. Examining the figure, it can be seen
how the reconstruction error depends on both the measurement error for the individual LOS velocities and
also on the spatial distribution of the measurements. The example on the right exhibits smaller error in Ex in
the high-latitude portion, apparently due to smaller measurement errors on the three central beams, which
are nearly aligned with the E × B flow from Ex . On the other hand, the example on the left exhibits smaller
error in Ey in the high-latitude portion, apparently due to better zonal filling of the LOS samples, which give
information on flow across the radar’s boresight.

4. Discussion and Conclusion

An algorithm has been developed to estimate the two-dimensional electric field distribution from the LOS
velocity measurements made by multibeam ISRs and to assign error estimates to the pixels of this electric
field “image.” The electric field distribution is underdetermined by the LOS velocities, and determining the
image is a problem in regularization, that is, in selecting a reasonable solution from the family of solutions
that match the data within the measurement error. We use the method of Lagrange multipliers to identify
the solution that minimizes a measure of curvature and gradient from the set of solutions that realize the
most probable value for the 𝜒2 statistic. The measure emphasizes curvature where there is good support
from the measurements and emphasizes gradient outside of this region in order to effect a relatively uni-
form approach to an unspecified boundary. The error in the reconstructed image is estimated by mapping
the mathematical form to a Bayesian estimate, and observing that the Lagrangian method uses the measure
of curvature and gradient to establish an effective a priori covariance matrix. The condition for existence and
uniqueness of the solution is that on average, the errors in the LOS velocities should be smaller than the LOS
velocities (equation (24)).

Examples of the algorithm applied to synthetic data are presented in section 3.1. Simulations of large-scale
electric potential blobs extended zonally (Figure 1) and meridionally (Figure 3) result in blobs localized
within the region well supported by the measurements, with the fields going to constant values outside
of this region. This is the best that we can expect the algorithm to perform without additional informa-
tion on the scale size of the structures. However, as expected, the estimated errors become large outside
of the measurement region. Simulations of localized blobs with idealized and realistic measurement errors
demonstrate that complex features can be reproduced by the algorithm. The main consequences of added
measurement noise are “noisier” images and muted features. The former effect can be evaluated by assess-
ing the a posteriori covariance matrix, and the latter effect is a consequence of the minimum curvature with
total error constraint approach that we have taken. This choice ensures that features must be well supported
by the measurements to appear in the final images.

Thus, the main limitation of the approach is with respect to structures with scales larger than the region
probed by the radar. This limitation is not related to the Lagrangian algorithm but is instead an inherent con-
sequence of the monostatic radar geometry. For example, attempting to fit a constant gradient solution to
the LOS data is unreliable and often results in an excessive gradient. This is a manifestation of the usual limi-
tations in Fourier reconstruction with respect to the size of the region covered by the data sample. We must
be content with reconstructing features that fit within the field of view of the experiment. In this regard,
we might note that the Resolute Bay Incoherent Scatter Radar achieves a larger field of view for imaging
because the steeper angle of the antenna face allows for beams that are more nearly horizontal.

Examples of the algorithm applied to real data from PFISR are presented in section 3.2. The images pro-
duced are compared with the LOS velocities measured along individual beams. Examining these results
(Figure 8), it is seen how the algorithm interprets the spatial distribution of LOS velocities in a way con-
sistent with human evaluation and possibly exceeding it; considering the number of factors that must be
balanced, it would be difficult for a human to do as good a job in reconstructing Ex and Ey . The error esti-
mated for the reconstructions is presented in Figure 9 and appears useful for evaluating the reliability of the
images produced.

In future work, we plan to use the methodology to study current systems associated with auroral arcs. The
simulations conducted have shown that the algorithm is robust in its representation of the magnitude and
divergence of the electric field, which are important for evaluating current systems and Joule heating rates.
It is somewhat surprising that the algorithm is good at estimating divergence, since this quantity depends
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on derivatives and is not normally addressed by ISR measurements at all. We have also developed a method-
ology for three-dimensional imaging of the electron density (not shown). Assuming that the electric field
maps along the geomagnetic field, and using model results for collision frequency, the images of electron
density allow derivation of three-dimensional current. For example, we hope to be able to distinguish
Type I and Type II arcs [Bostrom, 1964; Haerendel, 2011] and thereby make inferences as to physical source.
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