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Abstract Photoelectrons escape from the ionosphere on sunlit polar cap field lines. In order for those
field lines to carry zero current without significant heavy ion outflow or cold electron inflow, field-aligned
potential drops must form to reflect a portion of the escaping photoelectron population back to the
ionosphere. Using a 1-D ionosphere-polar wind model and measurements from the Resolute Bay
Incoherent Scatter Radar (RISR-N), this paper shows that these reflected photoelectrons are a significant
source of heat for the sunlit polar cap ionosphere. The model includes a kinetic suprathermal electron
transport solver, and it allows energy input from the upper boundary in three different ways: thermal
conduction, soft precipitation, and potentials that reflect photoelectrons. The simulations confirm that
reflection potentials of several tens of eV are required to prevent cold electron inflow and demonstrate that
the flux tube integrated change in electron heating rate (FTICEHR) associated with reflected photoelectrons
can reach 109 eV cm−2 s−1. Soft precipitation can produce FTICEHR of comparable magnitudes, but this
extra heating is divided among more electrons as a result of electron impact ionization. Simulations with no
reflected photoelectrons and with downward field-aligned currents (FAC) primarily carried by the escaping
photoelectrons have electron temperatures which are ∼250–500 K lower than the RISR-N measurements in
the 300–600 km region; however, simulations with reflected photoelectrons, zero FAC, and no other form of
heat flux through the upper boundary can satisfactorily reproduce the RISR-N data.

1. Introduction

The polar wind is the extension of the topside ionosphere over the polar cap in which ions can outflow into
the magnetosphere. The classical picture of the polar wind is as an ambipolar flow in which H+ and He+

escape the Earth’s gravity at supersonic speeds but the heavier O+ does not [Axford, 1968; Banks and Holzer,
1968, 1969a, 1969b]. The nonclassical polar wind includes other energization processes which can acceler-
ate O+ to escape energies and create nonthermal ion beams and conics (see Yau and André [1997], André
and Yau [1997] Moore et al. [1999], and Yau et al. [2011] for reviews). Both the amount of light ions outflowing
in the classical polar wind and the amount of heavy ions upflowing to regions where energization processes
could be important are controlled by the plasma densities and temperatures in the F region and topside
ionosphere [e.g., Schunk, 2007]. Thus, the energetics of the polar cap ionosphere is important to any study
of the polar wind and ion outflow.

Knowledge of polar cap aeronomy has recently been greatly expanded by the deployment of the north
face of the Resolute Bay Incoherent Scatter Radar (RISR-N) in 2009 [Bahcivan et al., 2010]. At 82.77◦N mag-
netic latitude, RISR-N is the highest magnetic latitude ISR ever constructed and the first ISR in the polar cap.
RISR-N provides electron density, electron temperature, and ion temperature profiles in the 100–600 km
region on a routine basis. The purpose of the present paper is to evaluate which physical processes are most
important in determining the plasma temperatures in the 300–600 km region as measured by RISR-N. In the
auroral zone and in the cusp the Poynting fluxes and particle precipitation fluxes from the magnetosphere
dominate the ionospheric dynamics. For a polar cap station like Resolute Bay, however, the Joule heating
and particle precipitation are expected to be small.

The polar ionosphere is heated both by the absorption of solar EUV and by inputs from the magnetosphere.
In polar ionospheric models the downward electron heat flux from the upper boundary is a particularly dif-
ficult boundary condition to set. The simulations using the Polar Wind Outflow Model (PWOM) presented by
Glocer et al. [2012] use values which map to −1.7×108 and −3.4×108 eV cm−2 s−1 at 6300 km. The mapping

VARNEY ET AL. ©2014. American Geophysical Union. All Rights Reserved. 8660

http://publications.agu.org/journals/
http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)2169-9402
http://dx.doi.org/10.1002/2013JA019378


Journal of Geophysical Research: Space Physics 10.1002/2013JA019378

is done by assuming the ratio of the heat flux to the magnetic field strength is constant along the field line
and the magnetic field varies as r−3, where r is the geocentric radius. During sunlit conditions small differ-
ences were observed between the simulations at these two values, but larger differences appeared at higher
solar zenith angles. These heat fluxes are fairly small, however. In contrast, Bekerat et al. [2007] compared
the ionospheric forecast model (IFM) to DMSP measurements of plasma density at 800 km and showed that
without any heat flux the IFM systematically underestimated the measurements by a factor of 2 but that rea-
sonable agreement could be achieved if heat fluxes of −5 × 109 to −1.5 × 1010 eV cm−2 s−1 were assumed at
the top boundary of 1500 km. At 6300 km these values map to −1.2 × 109 to −3.6 × 109 eV cm−2 s−1, which
are an order of magnitude larger than the values used by Glocer et al. [2012]. The changes in the IFM daytime
topside ionospheric profiles when such large heat fluxes are added are dramatic [Bekerat et al., 2007].

Both of the aforementioned models (IFM and PWOM) add downward heat flux through the upper bound-
ary as if it were transported by thermal conduction. The assumed heat flux is used with Fourier’s law to set
a boundary condition on the electron temperature gradient. In contrast, Akebono measurements of the
thermal electron temperature anisotropy demonstrate that the electron heat flows in the polar wind point
upward instead of downward [Yau et al., 1995]. Energy can flow down into the ionosphere in many other
forms, however. Electromagnetic energy fluxes (i.e., Poynting fluxes) will produce Joule heating, which pri-
marily heats the ions and neutrals instead of the electrons. Energy flux carried by suprathermal electrons will
both heat the thermal electrons through Coulomb collisions and excite and ionize neutrals through inelastic
collisions. In the polar cap the suprathermal electrons propagating downward from the upper boundary can
be divided into two classes: polar rain, i.e., soft precipitation of solar wind origin, and photoelectrons which
are reflected by high-altitude potential structures.

Poleward of the region 1 current system the global configuration of the ionosphere-magnetosphere sys-
tem dictates that the field-aligned currents (FACs) should be nearly zero. However, in the sunlit polar cap
large fluxes of photoelectrons are able to escape from the ionosphere. Typical numbers for light ion out-
flow and polar rain are not large enough to balance the photoelectron escape fluxes [Wilson et al., 1997].
Three options for achieving zero current remain. The first is an inflow of cold electrons from high altitudes;
however, it is not known if a sufficient population of high-altitude cold electrons exists to supply this inflow.
The second option is heavy ion outflow. Using kinetic simulations which include photoelectrons, Tam et
al. [1995, 1998] have produced supersonic O+ outflow. However, these simulations also predict electron
temperatures well over 104 K, which are much higher than Akebono measurements [Yau et al., 1995]. The
third option is that high-altitude potential structures form which reflect many of the escaping photoelec-
tron back into the ionosphere. Wilson et al. [1997] argued that this mechanism was the most reasonable,
and in kinetic simulations Wilson et al. [1997] and Su et al. [1998] were able to find zero current solutions
without cold electron inflow or heavy ion outflow by inserting double layers with potential drops of tens
of eV. One possible formation mechanism for these double layers is a contact discontinuity which forms
between the cold ionospheric electron gas and the hot magnetosheath electron gas [Barakat and Schunk,
1984; Barakat et al., 1998b]. The simulations of Barakat et al. [1998b] show that these double layers form
between 2 and 6 RE in altitude, and their locations are highly dynamic as the field lines convect through
different regions. In the sunlit polar cap the FAST spacecraft frequently observes downward moving photo-
electrons which are a copy of the upward moving photoelectron distribution up to a cutoff energy and then
nonexistent above that cutoff energy [Kitamura et al., 2012]. These measurements prove that polar cap field
lines usually, although not always, achieve zero current by creating high-altitude potential structures that
reflect photoelectrons.

The history of polar wind modeling is extensive (for reviews, see Ganguli [1996], Lemaire et al. [2007], Schunk
[2007] and Tam et al. [2007]). The model in the present paper was developed as a tool for examining dif-
ferent kinds of energy flows into the polar ionosphere but certainly does not capture all of the relevant
physics. Section 2 describes this newly developed ionosphere-polar wind model which includes three dif-
ferent kinds of energy fluxes through the upper boundary: thermal conduction, soft precipitation (polar
rain), and reflected photoelectrons. Section 3 shows example model runs with an emphasis on how different
kinds of energy flows produce different profiles. Then section 4 compares model runs to RISR-N data. Finally,
section 5 discusses the ramifications of the examples presented, and section 6 states the conclusions.
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2. Model Description

The 1-D model used in this study couples a fluid description of ions and thermal electrons with a kinetic
description of suprathermal electrons on a single vertical magnetic field line between 97 and 6300 km alti-
tudes. Strictly speaking, the assumptions underlying fluid descriptions of the ions are only valid below the
ion exobase, which is defined as the point where the ion mean free path equals the ion scale height and typ-
ically varies between 1500 and 3000 km altitudes [Lemaire et al., 2007]. All of the data-model comparisons
presented in this paper consider altitudes below 700 km where fluid theories are completely appropriate.
The upper portion of the model serves as a computational buffer between the upper boundary and the
region of interest. Tests have shown that the model results vary by only a few percent as the top boundary is
moved between 3000 km and 8500 km. If the upper boundary were lower than 3000 km then the light ions
would not necessarily be supersonic at the upper boundary. In this case the characteristic velocities are not
all upward, and simple outflow upper boundary conditions cannot be used. In models with upper bound-
aries below the transition point, either the light ion outflow fluxes, upflow velocities, or Mach numbers need
to be specified a priori.

The present study ignores ionospheric electrodynamics and thermospheric dynamics. The simulated field
line is fixed in geographic latitude and longitude, the neutral densities and temperatures are taken from the
NRLMSISE-00 empirical model [Picone et al., 2002], and the vertical winds are set to zero. The magnetic field
is assumed to be vertically oriented and vary with geocentric radius, r, as r−3. These are both good approx-
imations in the polar cap. The field-aligned ion dynamics are only influenced by the parallel (i.e., vertical)
component of the neutral winds, and thus, the horizontal winds do not need to be specified. The neglect of
convection is a serious limitation of the present model. The examples presented in this paper focus on times
near the summer solstice when the convecting field lines are constantly sunlit.

Fluid theories are constructed by assuming the distribution functions have a particular form which is
characterized by a small number of moments and then deriving equations for the evolution of these
moments [e.g., Schunk, 1977]. Blelly and Schunk [1993] compared the four most commonly used fluid
approximations in ionospheric physics for vertical open field lines. The systems of equations compared
were the “standard set,” which are the five-moment equations plus heat flows given by Fourier’s law, the
eight-moment equations, the thirteen-moment equations, and the sixteen-moment equations. It should be
noted that the twenty-moment equations reduce to the sixteen-moment equations in the gyro-dominated
limit [Gombosi and Rasmussen, 1991]. In the F region, Blelly and Schunk [1993] showed significant dif-
ferences in the equilibrium electron densities and temperatures between the “standard set” and the
eight-moment equations which they attributed to thermal diffusion, diffusion thermal, and thermoelectric
effects which are absent from the “standard set” but included in the eight-moment, thirteen-moment, and
sixteen-moment equations. The differences between the results of the eight-moment, thirteen-moment,
and sixteen-moment simulations were less dramatic, especially in the densities and velocities. The
eight-moment equations ignore temperature anisotropy, but temperature anisotropy should develop in
the high-altitude region where the light ions are supersonic. Nonetheless, this temperature anisotropy
has a relatively small influence on the resulting density and velocity profiles because in the supersonic
region the ion dynamic pressure is larger than the ion thermal pressure. The inefficient communication
between the higher and lower moments in the supersonic region explains why Blelly and Schunk [1993]
observed relatively small changes in the density and velocity profiles between the eight-, thirteen-, and
sixteen-moment equations. No fluid theory is rigorously justified in the collisionless polar wind [Lemaire et
al., 2007]; however, the present paper is focused on reflected photoelectrons which propagate down to the
F region ionosphere. Photoelectron propagation is primarily influenced by the neutral and thermal elec-
tron density profiles, and thus, the eight-moment formulation is good enough for the narrow focus of the
present study.

2.1. Eight-Moment Ion Equations
The eight-moment equations can be written in many different equivalent forms. One particularly elegant
form results in conservation laws with additional nonconservative terms involving the ambipolar elec-
tric field. The variables in this form are the density, momentum density vector, energy density, and energy
flow vector. The problem with this form is the heat flow vector is typically a small part of the total energy
flow vector, which can lead to loss of precision problems. Kőrösmezey et al. [1993] discuss an analogous
problem with the sixteen-moment equations. The model adopts a form of the eight-moment equations
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which uses a heat flow equation instead of an energy flow equation but is otherwise stated in terms of
conservative variables:
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In the above equations mi , ni , ui , pi , and qi are the ion mass, number density, field-aligned velocity, pres-
sure, and field-aligned heat flow, respectively. The energy density is defined as 𝜖i = 1
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along the magnetic field line, A ∝ r3 is the cross-sectional area of the magnetic flux tube, g and E∥ are the
gravitational and parallel electric field strengths, and e is the elementary charge. The operator 𝛿
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collisional terms.

Closed form expressions for all of the collisional terms needed in the five-moment equations which are valid
for arbitrarily large temperature and velocity differences between species have been derived, but unfortu-
nately, the same is not true for the eight-moment equations [Schunk and Nagy, 2009]. The Burgers linear
collision terms are valid for small temperature and velocity differences, and the Burgers semilinear colli-
sion terms are valid for small velocity differences but arbitrary temperatures differences [Burgers, 1969;
Schunk and Nagy, 2009]. In the polar wind the velocity differences between the light and heavy ions can
exceed the ion thermal speeds, meaning the Burgers linear collision terms are not valid. The collision terms
adopted for this study are the Burgers linear terms augmented with a few important terms from the general
five-moment expressions:
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In the above equations kB is Boltzmann’s constant, the 𝜈𝛼𝛽 are momentum transfer collision frequencies, and
the reduced masses and temperatures are defined as [Schunk and Nagy, 2009]
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In the collision term equations, summations over j refer to other ion species, summations over r refer to neu-
tral species involved in resonant charge exchange with ion species i, summations over m refer to neutral
species which cannot be involved in resonant charge exchange with ion species i, and sums over n refer to
all neutral species. These equations were derived assuming ion-ion interactions are Coulomb collisions, non-
resonant ion-neutral interactions are Maxwell molecule collisions, and resonant ion-neutral interactions are
hard sphere interactions with a ratio of the Chapman-Cowling integrals, Ω(2,2)∕Ω(1,1), of 1 instead of the ordi-
nary hard sphere value of 2 [cf. Schunk, 1975]. Expressions for the pure numbers D(1)
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If the velocity correction terms 𝜙ij and 𝜓ij were both set to unity, then (5)–(7) would be the Burgers linear
collision terms. Instead, the model uses the expressions for these correction terms which come from the
general five-moment collision terms for Coulomb collisions [see Schunk, 1977; Schunk and Nagy, 2009].
If the relative drift between ions i and j is small, these terms are both nearly unity, but if the relative drift

becomes large compared to

√
2kBTij

𝜇ij
, these terms go to zero. When these terms are included Coulomb col-

lisions become much less effective at driving the temperatures and velocities of the light and heavy ions
toward each other in the polar wind.

Lastly, the chemical term 𝛿ni

𝛿t
is written as Pi − L′i ni , where Pi is a production rate and L′i is a loss frequency.

The production is the sum of photoproduction, production by suprathermal electron impact ionization,
and chemical production. The chemical production and loss rates are computed using the reactions from
the recent review of Richards [2011] plus the extra reactions listed in Appendix A. The photoproduction
rates are computed from the high-resolution empirical solar EUV spectrum HEUVAC [Richards et al., 2006] as
described by Varney [2012]. The computation of the impact ionization rates from the suprathermal electron
fluxes is described in detail by Varney [2012].

Many ions produced in the ionosphere have such short chemical lifetimes that transport can be ignored.
In this model the eight-moment ion equations are only solved for H+, He+, and O+ (4S

)
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transport of N+ is not negligible above 300 km [Richards, 2011], but it is always such a small fraction of the
total ion density that its dynamics are unimportant. The excited ion O+ (4P∗) is assumed to instantly decay
to O+ (4S

)
, and O+ (2P∗) is assumed to instantly decay to either O+ (2D

)
or O+ (2P

)
with equal probabilities

[Richards, 2011].

2.2. Suprathermal Electron Equations
The model assumes the total electron distribution function is the sum of a thermal distribution and
a suprathermal distribution. The thermal distribution is nearly Maxwellian and can be described by
eight-moment transport equations, while the suprathermal distribution must be described using kinetic
theory. At lower altitudes where collisions are important, the suprathermal electron density is assumed to
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be small compared to the thermal electron density. This assumption allows the nonlinear terms describing
collisions between suprathermal electrons to be neglected compared to the suprathermal-thermal elec-
tron collision terms. In this limit the suprathermal electron transport equation reduces to a linear equation
which has a similar form to a radiative transfer equation [Khazanov et al., 1994; Schunk and Nagy, 2009;
Varney, 2012].

The form of the suprathermal electron transport equation used in this study is
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where  and 𝜇 are the kinetic energy and pitch angle cosine of the electrons, respectively, and Φ is the
suprathermal electron flux [cf. Khazanov et al., 1994]. The production function Q is the sum of photoproduc-
tion, cascade production, production from electron impact ionization, and production from quenching of
N(2D) [Varney et al., 2012]. The collision term is
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Expressions for the energy loss rate due to Coulomb collisions, L(), the pitch angle diffusion rate due to
Coulomb collisions, D(), the total inelastic cross sections, �̄�an, and the total elastic cross sections, �̄�en, are
given by Varney et al. [2012] and Varney [2012]. The work of Varney et al. [2012] assumed elastic collisions
were isotropic; this study relaxes that assumption and uses the anisotropic phase functions, pen( , 𝜇, 𝜇′),
from Prasad et al. [1985]. Degraded primaries from inelastic collisions, secondary electrons produced
from impact ionization, and newly produced photoelectrons are all produced isotropically. The transport
equation is solved using 16 pitch angle bins and a 107 bin nonuniformly spaced energy grid which extends
up to 1 keV.

If the work done by parallel electric fields is ignored, suprathermal electrons will only move downward in
energy and (13) can be solved one energy at a time starting at the highest energy bin in the grid [Varney,
2012]. One strategy for including the electric fields is to solve for all positions, pitch angles, and ener-
gies at once in a single large-sparse linear system solver [e.g., Mantas, 1975]. Another option is to rewrite
the equation in terms of electron total energy (i.e., kinetic plus electrostatic potential) and then solve the
equation one energy bin at a time on the total energy grid [Liemohn et al., 1997]. This second approach is
clearly the most elegant in the collisionless regime, but it greatly complicates the treatment of inelastic col-
lisions. The approach used in this study is an iterative approach which is similar to the one developed by
Gustavsson and Eliasson [2008] to model electron acceleration by an HF heater. The transport equation is
solved one energy at a time using upwinded differences in energy space which depend on the sign of 𝜇E∥
to approximate the 𝜕

𝜕 term. Whenever these differences require a reference to the flux at the energy below
the current energy, the flux from the previous iteration is used instead. The iteration continues until the RMS
change in the computed heating rate between subsequent iterations is less than 10−4, which typically only
takes between 2 and 15 iterations.

2.3. Thermal Electron Equations
The thermal electron population could be described with a system of eight-moment equations similar to
those used for the ions; however, the electron equations can be significantly simplified in the limit of small
electron mass. On time scales much longer than the inverse electron plasma frequency the thermal electron
density and flux can be determined from the quasineutrality and current continuity conditions:
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where the e and s subscripts refer to thermal and suprathermal electron moments, respectively, the
sums over i refer to sums over all ion species, and the needed moments of the suprathermal electron
distribution are

ns ≡ 2𝜋 ∫
∞

0
d ∫

1

−1
d𝜇

√
me

2 Φ (16)

Γs ≡ 2𝜋 ∫
∞

0
d ∫

1

−1
d𝜇 𝜇Φ. (17)

These moments include all of the types of suprathermal electrons considered, including polar rain and
reflected photoelectrons. The FAC density at the upper boundary, JUB, is taken as an input, and AUB is the
field line cross-sectional area at the upper boundary.

In the limit of small electron mass the thermal electron heat flow equation reduces to the a steady state
solution of [Schunk and Nagy, 2009]

qe = −𝜅e

𝜕Te

𝜕s
+ 5

2
ũepe, (18)

where 𝜅e is the thermal conductivity, and the effective velocity in the thermoelectric term is

ũe ≡ 3
4

∑
i

𝜈ei

𝜈ec

(
ue − ui

)
+ 5

4

∑
n

𝜈en

𝜈ec
zen

(
ue − un

)
(19)

𝜈ec ≡ 𝜈ee +
13
8

∑
i

𝜈ei +
5
4
𝜈enz′en zen ≡ 1 − 2

5

Ω(1,2)
en

Ω(1,1)
en

z′en ≡ 5
2
+ 2

5

Ω(1,3)
en − Ω(1,2)

en

Ω(1,1)
en

Expressions for the electron-electron collision frequency, 𝜈ee, the electron-ion collision frequencies, 𝜈ei , the
electron-neutral collision frequencies, 𝜈en, and the Chapman-Cowling integrals for electron-neutral colli-
sions, Ω(𝓁,j)

en , are all taken from Schunk and Nagy [2009]. Compared to the transport coefficients computed
by Spitzer and Härm [1953] using kinetic theory, the eight-moment value for the thermoelectric coefficient
is very good, but the eight-moment value for the electron thermal conductivity is too small by more than a
factor of 2 [Schunk, 1975]. Thus, while the model uses the eight-moment result for the thermoelectric term, it
uses the widely used Banks [1966] expression for the electron thermal conductivity instead. This expression
is identical to that used in Sami2 is another model of the ionosphere (SAMI2) [Huba et al., 2000a].

The electrons obey an energy equation which has the same form as (3). Substituting (18) into that electron
energy equation and taking the limit of small electron mass results in a simplified electron energy equation

𝜕

𝜕t

(3
2

Ape

)
+ 𝜕

𝜕s

[5
2

A
(

ue + ũe

)
pe

]
= −AneueeE∥ +

𝜕

𝜕s

[
A𝜅e

𝜕Te

𝜕s

]
+ A

𝛿E′
e

𝛿t
+ A

3
2

kBTe

𝛿ne

𝛿t
. (20)

The term 𝛿ne

𝛿t
could be computed by insisting that all collisions and chemical reactions conserve charge, but

ultimately this term is not directly computed by the model. The collisional heating and cooling term can be
written in the form

𝛿E′
e

𝛿t
= Qphe −

∑
i

ne𝜈ei3kB

(
Te − Ti

)
−
∑

n

L′en

(
Te − Tn

)
. (21)

The computation of the suprathermal electron heating rate, Qphe, from the suprathermal flux is described
by Hoegy [1984], Varney et al. [2012], and Varney [2012]. The heating rate is computed by summing all the
energy lost by suprathermal electrons to Coulomb collisions, and the algorithm is guaranteed to numeri-
cally conserve energy [Varney, 2012]. Empirical expressions for the electron cooling rates due to inelastic
collisions with neutrals, Len, are given by Schunk and Nagy [2009]. The inelastic collisions considered excite
N2 rotation and vibration, O2 rotation and vibration, O fine structure, and O

(
1D
)

. The term L′en is defined as
L′en ≡ Len∕(Te − Tn), and this term is finite in the limit as Te → Tn for all the inelastic processes considered.
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2.4. Self-Consistent Electric Field
Appendix B derives the following expression for the ambipolar electric field:

E∥ = − 1
ene

{
𝜕pe

𝜕s
+ 𝜂nekB

𝜕Te

𝜕s

}
(22)

= − 1
eAne

{
(1 + 𝜂)

[
𝜕

𝜕s

(
Ape

)
− Ape

𝜕 ln A
𝜕s

]
− 𝜂kBTe

[
𝜕

𝜕s

(
Ane

)
− Ane

𝜕 ln A
𝜕s

]}
,

where

𝜂 ≡ me

pe

(
3
5

∑
i

𝜈ei +
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n

𝜈enzen

)
𝜅e

kB
(23)

is a dimensionless number which characterizes the relative importance of the electron thermal diffusion
effect. This work only concerns situations where the low-altitude thermal electron velocities are rela-
tively small. Proper consideration of situations where this is not true, such as in auroral downward current
regions, would require the retention of additional collisional terms involving electron-ion and electron-
neutral friction.

This expression for the ambipolar electric field does not explicitly contain any moments of the suprathermal
electron distribution, and yet the model will still capture the augmentation of the ambipolar electric field
by suprathermal electrons. The study by Khazanov et al. [1997] also only used the thermal electron pres-
sure gradient to set the ambipolar electric field, and yet those authors were able to demonstrate significant
augmentation of the ambipolar electric field by photoelectrons. As shown in Appendix B, (22) is a limiting
case of (B7). Furthermore, (B7) and the steady state suprathermal electron transport equation, (13), together
imply (B6). Intuitively, (B6) shows that the ambipolar electric field is driven by pressure gradients in both the
thermal and suprathermal electron gasses. The suprathermal electrons affects ue through the current conti-
nuity condition, and ue affects pe in the electron energy equation. The thermal electron pressure will adjust
itself such that (B6) is always satisfied even though this equation is never explicitly used.

2.5. Numerical Methods
The model uses two different time steps: an outer step size which is fixed at 180 s and an inner step size
which adjusts itself using a Courant condition based on the ion dynamics and is typically ∼0.2 s. The above
equations are all in the limit of small electron mass, so even smaller time scales associated with the ther-
mal electron dynamics, such as the inverse plasma frequency and the suprathermal electron travel times, do
not need to be considered. Once per outer time step the NRLMSISE-00 model is called to update the neutral
atmosphere, the photoproduction routine is called to update the ion and photoelectron production rates,
and the steady state suprathermal electron transport solver is called to update the suprathermal electron
distribution moments, the thermal electron heating rates, and the secondary production rates. The photo-
production routine only depends on the neutral atmospheric parameters and the solar spectrum, so it only
needs to be called as often as NRLMSISE-00 is called. The suprathermal electron transport, however, does
depend on the thermal electron parameters and the electric fields as well as the neutral atmospheric param-
eters and the solar spectrum. Nonetheless, as long as the thermal electron densities and electric fields are
not changing rapidly compared to the outer time scale, updating the suprathermal electron parameters at
the outer time scale will not introduce serious errors and is much more computationally efficient than call-
ing the suprathermal electron solver at the inner time scale. This approach is not appropriate for studying
the suprathermal electron effects on polar wind shocks and other transients, but it is sufficient for studying
quasi steady state solutions.

Once the ion primary and secondary production rates, the thermal electron heating rates, and the
suprathermal electron densities and net fluxes are specified, (1)–(4) and (20) form a closed system of
equations for the ion densities, ion fluxes, ion energy densities, ion heat fluxes, and electron energy densi-
ties. Many of the collisional terms in these equations vary by orders of magnitude over the domain and thus
must be treated implicitly. However, many of the transport terms are both nonlinear and involve deriva-
tives of state variables, meaning these terms are most easily treated explicitly. A simple solution is to split
the system of equations into two simpler systems and use operator splitting [cf. LeVeque, 2002, chapter 17].
Every inner time step involves an implicit time step of the first system followed by an explicit time step of
the second system. The step size for both of these steps is the inner time scale (∼0.2s).
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The explicit numerics system is
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When (22) is substituted for the ambipolar electric field, these equations are in the form

𝜕W
𝜕t

+ 𝜕F
𝜕s

− L
𝜕W
𝜕s

− S = 0, (29)

where W is a 13-element vector of state variables (three ions times four ion parameters plus thermal electron
energy density), F is a 13-element vector of fluxes, S is a 13-element vector of sources, and L is a 13 by 13
sparse matrix. All of these quantities can be computed from the state variables without needing derivatives
of the state variables.

Kőrösmezey et al. [1993] have shown that the sixteen-moment transport equations can also be written in the
form of (29) and discussed one possible finite volume scheme for systems of this form. This work uses a sim-
pler finite volume scheme which is only second-order accurate in space but never requires the computation
of characteristic speeds from eigenvalue solvers and never couples the source terms between adjacent cells.

First, given the cell averages of the state variables after the most recent implicit step, values of these state
variables on the left and right sides of the cell interfaces are reconstructed using a van Leer slope limiter
[LeVeque, 2002]. If Wi is the cell average in cell i and 𝜎i is the slope determined from the slope limiter for the
reconstruction in cell i, then the value immediately below the interface between cells i and i + 1 is W−

i+1∕2 =
Wi +

1
2
𝜎iΔsi , and the value immediately above the interface is W+

i+1∕2 = Wi+1 − 1
2
𝜎i+1Δsi+1. Next, the local

Lax-Friedrichs fluxes are constructed at the cell interfaces [LeVeque, 2002]

Fi+1∕2 = 1
2

[
F
(

W−
i+1∕2

)
+ F

(
W+

i+1∕2

)
−ai

(
W+

i+1∕2 − W−
i+1∕2

)]
. (30)

The matrix ai is a diagonal matrix containing the freezing speeds. Palmadesso et al. [1988] and Kőrösmezey
et al. [1993] have discussed the characteristic speeds of the sixteen-moment equations in detail. Like the
sixteen-moment equations, the eight-moment equations contain ion-thermal waves which travel approx-
imately at the ion thermal speed and ion-acoustic waves which travel somewhat faster than ion acoustics
waves would in an isothermal or adiabatic ion gas. Instead of computing the exact characteristic speeds
from an eigenvalue solver, the model simply sets the freezing speeds for fluxes related to ion j to

aj = |||uj
||| + 2

√
pj

njmj
+

pe

nemj
(31)

where the ad hoc factor of 2 virtually always causes these speeds to be slightly faster than the correspond-
ing characteristic speeds. The freezing speed for the electron energy equation is

ae =
||||ue +

5
3

ũe

|||| . (32)

The freezing speeds are evaluated using the reconstructed values on both sides of the interface and the
faster results are used in the flux evaluation. Furthermore, at the beginning of each inner time step the vari-
ous freezing speeds are evaluated using the cell averages from the end of the last time step and the results
are uses to determine the new time step according to

Δt = min
i

{
Δsi

2ae
i

,min
j

Δsi

2aj
i

}
. (33)
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The H+ freezing speed virtually always determines the time step.

The third term in (29) requires derivatives of the state variables. These are computed from the reconstructed
values at the cell interfaces using

𝜕W
𝜕s

||||i
≈ 1

2Δsi

[
W+

i+1∕2 + W−
i+1∕2 − W+

i−1∕2 − W−
i−1∕2

]
. (34)

Finally, Li and Si are evaluated using the cell averages and the time advance equation is

W
n+1

i = Wi −
Δt
Δsi

[
Fi+1∕2 − Fi−1∕2

]
+ ΔtLi

𝜕W
𝜕s

||||i
+ ΔtSi (35)

The implicit numerics system could be written in terms of the same state variables as the explicit numerics
system, but it is more compactly expressed and better conditioned in terms of a different set of variables:
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(40)

All of the ion equations do not involve any spatial derivatives and thus can be solved one cell at a time. The
electron temperature equation only involves spatial derivatives of the electron temperature, and thus only
requires a simple tridiagonal linear system solve. The nonlinear expressions for the electron thermal con-
ductivity, reaction rates, collision frequencies, heating and cooling rates, and correction factors 𝜓 and 𝜙 are
all evaluated using the old values of the state variables. The densities are updated first. Then the ion veloc-
ities and heat flows are updated together in a six by six linear system solve at each grid cell. Finally, the ion
and electron temperatures are updated using the updated densities and velocities. This order of opera-
tions avoids the need for nonlinear implicit solvers and also guarantees that the total work done by ion-ion
collisions equals the total heat created by the ion-ion frictional heating terms.

2.6. Boundary Conditions
In the implicit numerics portion of the fluid model only the electron temperature equation involves spatial
derivatives. The lower boundary condition is that Te = Tn. The upper boundary condition is an imposed
electron temperature gradient. In the simulations where this gradient is nonzero, it is varied in such a way
that the contribution to the total electron heat flux from this gradient, qe;∇Te

= −𝜅e∇Te, is constant.

The explicit numerics portion of the fluid model uses two ghost cells at each boundary to set the bound-
ary conditions. At the lower boundary of the model, transport processes are negligible compared to local
production/loss and heating and cooling. Thus, the bottom of the model uses a “hard wall" boundary con-
dition. In the lower ghost cells the fluxes and heat fluxes are set to zero in the ghost cells and the densities
and energy densities are populated using zero order extrapolation from the last real cell. Outflow conditions
are used at the upper boundary. All of the ion parameters in the upper ghost cells are filled with zero-order
extrapolation from the last real cells, which is tantamount to
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If the ion velocities are negative, then this boundary condition will allow ion density to fill the model as if
from an infinite high-altitude reservoir. To prevent this from happening, if the velocity is negative, then the
fluxes in the ghost cells for that species are set to zero. This is normally the case for O+ and rarely the case for
the light ions. The electron pressure in the upper ghost cells is determined by assuming
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= 0, (42)
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and using the same electron temperature gradient which was used at the upper boundary of the
implicit solver.

In the suprathermal electron transport solver the lower boundary is treated as described by Varney et al.
[2012]; local equilibrium is assumed below 120 km and no upward flux is allowed to cross the boundary at
120 km. The upper boundary condition on the upward fluxes is simply

𝜕

𝜕s
(AΦ)

||||sUB

= 0, (43)

while the downward fluxes at the upper boundary must be specified. Two different populations of down-
ward moving suprathermal electron are considered at the upper boundary: polar rain (i.e., soft precipitation
of solar wind origin) and reflected photoelectrons.

The reflected photoelectrons are modeled by specifying a potential energy difference between the upper
boundary and infinity, r , and assuming that beyond the upper boundary the motion of suprathermal elec-
trons is collisionless and adiabatic. All upward moving photoelectrons with energies less than r will reflect.
A small portion of the upward moving photoelectrons with energies greater than r can also reflect if they
leave with pitch angles greater than zero, but the size of this population goes to zero in the limit where the
potential structure is infinitely far away. Ignoring that population is tantamount to assuming the loss cone
has become infinitesimal by the altitude of the potential drop.

In the absence of reflection potentials, the polar rain flux is assumed to have a Maxwellian energy distribu-
tion and to travel in a narrow loss cone. For polar rain with total number flux ΓR, characteristic energy 0,
and total energy flux 2ΓR0 the flux is

ΦR

( , 𝜇; ΓR, 0

)
= Υ(𝜇)

𝜋

ΓR

0


0

exp
[
− 
0

]
, (44)

where ∫ 0
−1 Υ(𝜇)d𝜇 = 1. The pitch angle distribution factor, Υ(𝜇), is assumed to be so narrow that all of the

precipitating electrons appear in the 𝜇 bin closest to 𝜇 = −1. If a potential structure exists which reflects
photoelectrons back into the ionosphere, the same structure will accelerate, precipitating polar rain elec-
trons. In the limit where the loss cone is infinitesimal at the altitude of the potential structure, the potential
simply shifts (44) up by r . The corresponding energy flux of the shifted distribution is ΓR

(
20 + r

)
. The

complete downward flux at the upper boundary is given by

Φ
(

sUB,  , 𝜇) = {
Φ
(

sUB,  ,−𝜇)  ≤ r

ΦR

( − r, 𝜇; ΓR, 0

)  > r.
(45)

The reflection potential has no effect on the upper boundary condition for the ions. This assumption is jus-
tified if the potential structure is high enough in altitude for the plasma to be dominated by H+ and for
the H+ to be supersonic. In this case a sharp drop in the H+ density and a sharp increase in the H+ velocity
will appear at the location of the potential structure [cf. Barakat et al., 1998b]; however, information about
these discontinuities cannot be transmitted down the field line because the characteristic velocities in a
supersonic gas all point upward.

3. Example Results

As an example, Figure 1 summarizes the state of a reference simulation performed for a field line located
over Resolute Bay, Canada (74.73◦N, 94.91◦W geographic) at 1800 UT on the June solstice for medium-high
solar conditions (F10.7 = 140) and quiet geomagnetic conditions (Ap = 3.0). The simulation was initial-
ized 36 h before the time shown. In June this location is continuously sunlit. The first 6 h of the simulation
exhibit transient behavior associated with the initial conditions, but the rest of the simulation exhibits a
quasi steady state which slowly changes with the changes in the solar zenith angle. This simulation was per-
formed with zero polar rain, zero electron heat flux down from the upper boundary, zero FAC, and a constant
reflection potential of 40 eV. Figure 1 (first panel) shows the densities of thermal electrons (e−t ), suprather-
mal electrons (e−s ), and the three transported ion species. As expected for the sunlit polar cap, O+ is the
dominant ion at all altitudes below 1 RE [cf. Kitamura et al., 2011; Glocer et al., 2012].

Figure 1 (second panel) shows several different velocities. Solid lines are used for the fluid velocities of the

species, dashed lines are used for the ion acoustic speeds, csi =
√

pi

ni mi
+ pe

nemi
, and dash-dotted lines are
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Figure 1. Summary of the reference simulation. (first to fifth panels) The panels plot the densities, velocities, number
fluxes, temperatures, and electrostatic potential. The density curves labeled e−t and e−s represent the densities of thermal
and suprathermal electrons, respectively. In the velocities panel solid lines are used for fluid velocities, dashed lines are
used for ion acoustic speeds, and dash-dotted lines are used for heat flow velocities (see text). In the temperature panel
the cyan curve is the NRLMSISE-00 neutral temperature. The electrostatic potentials in the right panel have been shifted
such that their maximum value is zero.

used for “heat flow velocities," defined as cqi =
qi

pi
. The H+ and He+ ion flows become supersonic at 2300 and

2900 km, respectively, whereas the O+ velocities remain insignificant at all altitudes. When the heat flow
velocity is much less than the fluid velocity, the behavior is essentially adiabatic. In this simulation the ion
heat flow velocities are generally less than both the fluid velocities and the ion acoustic speeds but are
nonetheless on the same order of magnitude. Thus, while the heat flows are not the dominant terms in the
ion energy equations, the flows are not adiabatic either.

For the conditions of the reference simulation the thermal electron fluxes at the upper boundary are
nearly zero. The applied reflection potential of 40 eV is crucial for the simulation to achieve zero current
without requiring huge thermal electron inflows through the upper boundary. In the uppermost real com-
putational cell the thermal electron flux is −7 × 104 cm−2 s−1, the upward suprathermal electron flux is
2.5154 × 108 cm−2 s−1, the downward (reflected) suprathermal electron flux is −2.4244 × 108 cm−2 s−1, the
net suprathermal electron flux is 9.10×106 cm−2 s−1, the H+ ion flux is 9.12×106 cm−2 s−1, the He+ ion flux is
1.5× 105 cm−2 s−1, and the O+ is −2.4× 105 cm−2 s−1. The potential reflects most of the escaping photoelec-
trons back into the ionosphere, and the net flux carried by the highest-energy photoelectrons is primarily
balanced by the H+ ion outflow. The O+ fluxes are small because O+ is nearly in diffusive equilibrium, and
the He+ fluxes are small despite the supersonic He+ velocities because the He+ densities are so small.

Figure 1 (fourth panel) shows the temperatures of the thermal electrons, the three transported ion species,
and the NRLMSISE-00 neutral temperature. The electrons become nearly isothermal at high altitudes as
expected when the top boundary condition is zero temperature gradient. The O+ ion temperatures equal
the neutral temperature at low altitudes, then approach but never reach the electron temperatures at high
altitudes. The O+ heat flows have the opposite sign from the O+ temperature gradients as expected from
Fourier’s law. The temperatures and heat flows of the light ions, however, exhibit much more complicated
behavior because these minor ions are flowing at supersonic speeds through the dominant ion gas. This rel-
ative motion induces significant heat flows in the light ion gases via the collisional terms involving velocity
differences in (7). Effects associated with these collision terms are known as diffusion thermal effects [Schunk
and Nagy, 2009]. The light ion heat flows are upward at most altitudes, even if the temperature gradients
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are upward, as a result of diffusion thermal effects [cf. Blelly and Schunk, 1993, Figure 4d]. Of the two velocity
correction terms for Coulomb collisions, 𝜓ij goes to zero with increasing relative velocity much faster than 𝜙ij

[Schunk, 1977]. Thus, Coulomb collisions are ineffective at equalizing the ion temperatures when supersonic
velocity differences exist, but frictional heating can still be important. The combination of ion-ion frictional
heating and upward induced heat flows in the ion gases causes the light ion temperatures to exceed the
electron temperatures around the sonic points. These high light ion temperatures are very effective at
driving light ion outflow. At the highest altitudes where the plasma is collisionless the light ions are cooled
by adiabatic expansion due to increasing flux tube area and increasing velocity with altitude.

Finally, Figure 1 (fifth panel) shows the electrostatic potential associated with the ambipolar electric fields.
The potential drop between the peak of the F region and the top boundary is 2.49 V. Khazanov et al. [1997]
have presented collisionless kinetic simulations of the polar wind between 500 km and 5 RE with various
different densities of photoelectrons at their lower boundary. They estimate potential drops of 2.87 and
7.25 V between 500 km and 5 RE for photoelectron fractions of 0.01% and 1.00%, respectively, with most of
these potential drops occurring in the lowest 2–3 RE . The potential drops computed from these collision-
less simulations should be regarded as upper bounds for what photoelectrons can do. Their simulations
look like classical polar wind solutions for photoelectron fractions less than ∼0.05%, but then transition to
another regime where the O+ outflows supersonically as the photoelectron fraction approaches 1.00%. They
note that photoelectron fractions above 0.10% are rare, and thus, this other regime represents an unusual
extreme case. Khazanov et al. [1998] generalized the work of Khazanov et al. [1997] to allow for arbitrary
potential profiles, including nonmonotonicities. According to Khazanov et al. [1998], the results of Khazanov
et al. [1997] hold at low and moderate photoelectron concentrations, but the generalized model produces
substantially different potential profiles and more outflow compared to the Khazanov et al. [1997] model
when the photoelectron fraction at 500 km is 0.03% or higher. For the reference simulation in Figure 1
the photoelectron fraction at 500 km is 0.0143%, and thus, this simulation lies comfortably in the classi-
cal polar wind regime. The potential drops associated with the ambipolar electric field are much too small
to explain the assumed 40 V drop above the upper boundary. This drop must be mostly associated with
some other kind of potential structure such as double layers like those simulated by Wilson et al. [1997] and
Su et al. [1998].

3.1. Effects of Different Types of Energy Flows
A strength of the model developed for the present paper is it can take three different forms of energy flow
through the upper boundary: thermal electron conduction, polar rain, and reflected photoelectrons. Apply-
ing the same amount of energy through different channels results in different signatures in the ionosphere,
thus permitting a discussion of the possible nature of this energy flow instead of just an estimation of its
numerical value. Figure 2 summarizes the results of 14 simulations with different amounts and kinds of
energy flux applied at the upper boundary. All examples shown are for the same time, location, and con-
ditions as the reference simulation in Figure 1. Note, unless otherwise specified, all these simulations use a
40 eV reflection potential. The left column shows the thermal electron velocities, the middle column shows
the thermal electron densities, and the right column shows the electron and O+ ion temperatures. The
top row shows the effects of changing the reflection potential, the second row shows the effects of vari-
ous fluxes of 50 eV characteristic energy polar rain, and the third row shows the effects of various electron
temperature gradients at the upper boundary. In each row the red curves are the reference simulation.

The three kinds of energy flow all influence the electron temperatures above ∼300 km and the ion tem-
peratures above ∼750 km and are thus hard to differentiate from temperature measurements alone. In the
simulations with thermal electron heat conduction through the upper boundary the electron temperature
profiles at high altitude increase as s2∕7 which is expected when the thermal conductivity is proportional
to T 5∕2

e [Schunk and Nagy, 2009]. When the energy flux is applied through only suprathermal electron
processes, however, the roughly isothermal nature of the high-altitude electrons is retained.

The interpretation of the effects of suprathermal electrons coming down from the upper boundary is com-
plicated because they carry number fluxes as well as heat fluxes and thus influence the thermal electron
velocities through the current continuity condition. Reflection potentials less than the reference value of
40 eV require significant thermal electron inflows to achieve zero current, with the required inflow velocity
exceeding 65 km/s in the case of zero reflection potential. Even if a sufficient population of cold elec-
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Figure 2. Summary plots of simulations with parameters changed from the reference case. (first to third rows) The rows illustrate the effects of changing the
reflection potential, polar rain flux, and the electron heat flux associated with a temperature gradient at the upper boundary. The colors in the legends apply to
the entire row. The temperature panels use solid lines for electron temperature, dashed lines for O+ temperatures, and dash-dotted lines for neutral temperatures.
The legends quote reflection potentials Er in eV, FAC densities at the upper boundary JUB in μA m−2 (negative = downward), polar rain fluxes at the upper bound-
ary ΓR in cm−2 s−1, and the electron heat fluxes associated with temperature gradients at the upper boundary qe;∇Te

in 108 eV cm−2 s−1 (negative = downward).
The polar rain simulations all use a characteristic energy of 50 eV and a reflection (acceleration) potential of 40 eV, and thus, the corresponding energy fluxes in
eV cm−2 s−1 are 140ΓR .

trons existed at high altitudes to support this inflow, such large velocity differences between the ions and
electrons could potentially excite instabilities.

As expected, the effect of decreasing the reflection potential is to decrease the electron temperatures at
low altitudes since more photoelectrons escape without thermalizing. The electron temperatures above
∼2300 km, however, go up with decreasing reflection potential. Even though the energy flux associated
with the reflected photoelectrons decreases with decreasing reflection potential, the inflowing thermal
electrons carry a downward energy flux as well. The large electron inflows heat the electrons via adiabatic
compression. In the simulation with no reflection potential the energy flux at the upper boundary associ-
ated with the inflow is 5

2
uepe = −6.83 × 107 eV cm−2 s−1. Temperature is a measure of energy per particle,

and thus, the temperature decreases at low altitudes where the densities are large represent a much larger
energy change than the temperature increases at high altitudes. Let the flux tube averaged electron energy
density be defined as

⟨We⟩ = 1
AUB ∫

sUB

sLB

A(s)ne(s)kBTe(s)ds. (46)

For the simulations from Figure 2 (first row), this number is 463, 471, 485, 497, and 503 GeV cm−2 for reflec-
tion potentials of 0, 10, 20, 30, and 40 eV, respectively. Reducing the number of reflected photoelectrons
and replacing them with the same number flux of thermal inflow has the effect of lowering ⟨We⟩, which is
expected since the thermal inflow has a lower average energy per particle than the reflected photoelec-
trons. Thermal electron velocity effects also explain why the high-altitude electron temperatures decrease
with the addition of polar rain. In these cases the upward electron velocities cool the electrons to lower
temperatures than the ions via adiabatic expansion.
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Figure 3. Cumulative escaping photoelectron kinetic energy fluxes
(red), cumulative escaping photoelectron total energy fluxes (green),
and FTICEHR as a function of reflection potential for the reference case.
See the text for definitions of these quantities.

The black curves in Figure 2 (first row)
are from a simulation where the reflec-
tion potential is set to zero but a FAC of
−0.16 μA m−2 is assumed at the upper
boundary. This downward current is
primarily carried by escaping photoelec-
trons. The thermal electron velocities
in the current carrying simulation are
upward instead of downward and com-
pared to the reference simulation the
temperature at 1470 km is 529 K lower.
This substantial temperature change is
a meaningful indication of the impor-
tance of reflected photoelectrons in
heating the thermal electrons because
neither the reference case nor the sim-
ulation with a FAC is complicated by
adiabatic compression effects. The ⟨We⟩
for this simulation is 434 GeV cm−2. This
is lower than any of the other simula-
tions because this simulation has neither
reflected photoelectrons nor energy
carried by thermal electron inflow.

Adding a temperature gradient, a reflection potential, or polar rain are all ways to increase the electron
energy density by modifying the upper boundary condition. In order to compare the relative effectiveness
of these three methods, it is instructive to apply the operator −1

AUB
∫ sUB

sLB
ds to the steady state limit of the

electron energy equation. The result is

−5
2

ue

(
sUB

)
pe

(
sUB

)
− qe

(
sUB

)
+ 1

AUB ∫
sUB

sLB

A
(

Qphe − Q∗
phe

)
ds (47)

= 1
AUB ∫

sUB

sLB

A

{
neueeE∥ +

3
2

kBTe

𝛿ne

𝛿t
− Q∗

phe

+
∑

i

ne𝜈ei3kB

(
Te − Ti

)
+
∑

n

L′en

(
Te − Tn

)}
ds,

where Q∗
phe is what the suprathermal electron heating rate would be if no reflection potential or polar rain

were included, but the ambipolar electric field and thermal electron density profile remained the same.
In the above, the electron velocity and heat flux are assumed to be zero at the lower boundary. The three
terms on the left-hand side (LHS) of (47) represent ways the upper boundary conditions heat the thermal
electrons, and comparing the relative magnitudes of these three terms gives an indication of the domi-
nant process. Nonetheless, even if the LHS of this equation is identical for two cases, the resulting electron
temperature profiles will not be identical because the terms on the right-hand side of the equation are not
totally independent of the upper boundary conditions.

To quantify how well the reflected photoelectrons heat the electrons, the electron density, electron temper-
ature, and ambipolar electric field profiles were fixed to the values from the end of the reference simulation
(i.e., Figure 1), and the suprathermal electron transport solver was called with many different reflection
potentials. The flux tube integrated changes in the electron heating rates (FTICEHR), i.e. the third term on the
LHS of (47), are plotted as function of reflection potential in Figure 3. The FTICEHR are evaluated by numer-
ically integrating the difference between the electron heating rate from the case in question, Qphe, and the
heating rate computed from the zero reflection potential case, Q∗

phe. Also plotted are the cumulative kinetic
and total energy fluxes of the escaping photoelectrons from the zero reflection potential case, defined as

qkinetic() = ∫


0
d ′  ′∫

1

0
d𝜇 𝜇Φ

(
sUB,  ′, 𝜇

)
, (48)
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qtotal() = ∫


0
d ′ ( ′ − eU

)
∫

1

0
d𝜇 𝜇Φ

(
sUB,  ′, 𝜇

)
, (49)

respectively, where the potential energy −eU = 2.49 eV for the state at the end of the reference simulation.
The FTICEHR increase monotonically with reflection potential, but the rate of increase above 30 eV is small
because the peak in the photoelectron differential energy flux distribution is around 20 eV. For the reference
value of 40 eV the FTICEHR is 1.01 × 109 eV cm−2 s−1, which is 54.3% of the cumulative total energy flux at
40 eV. The FTICEHR is necessarily less than the cumulative total energy flux because reflected photoelec-
trons can lose energy to the neutrals as well as to the thermal electrons.

The concept of a FTICEHR can also be used to evaluate the effectiveness of polar rain electrons. Let Qphe be
the heating rate with all populations of suprathermal electrons included, Q∗

phe be the heating rate with no
polar rain and no reflection potential, and Q′

phe be the heating rate with no polar rain but with a reflection
potential. Let the FTICEHR associated with just the reflected photoelectrons be

FTICEHR(reflection) ≡ 1
AUB ∫

sUB

sLB

A
(

Q′
phe − Q∗

phe

)
ds, (50)

the FTICEHR associated with just the polar rain be

FTICEHR(polar rain) ≡ 1
AUB ∫

sUB

sLB

A
(

Qphe − Q′
phe

)
ds, (51)

and the total FTICEHR associated with all populations of suprathermal electrons coming from the upper
boundary be the sum of the two, i.e.,

FTICEHR(total) ≡ 1
AUB ∫

sUB

sLB

A
(
Qphe − Q∗

phe

)
ds. (52)

In the simulation from Figure 2 with a polar rain flux of 107 cm−2 s−1, the precipitating electrons carry a
kinetic energy flux of 1.40 × 109 eV cm−2 s−1 at the upper boundary, which is larger than the FTICEHR of the
reflected photoelectrons, and yet the effect of this polar rain on the low-altitude temperatures is minimal. At
energies higher than 100 eV the cross sections for electron impact ionization dominate, and thus, the polar
rain electrons are much less efficient at heating the electrons than reflected photoelectrons. Figure 4 shows
the FTICEHR for polar rain with a kinetic energy flux of 109 eV cm−2 s−1 as a function of characteristic energy.
Like Figure 3, the tests in Figure 4 fix the electron density, electron temperature, and ambipolar electric field
to the values from the end of the reference simulation for every characteristic energy. The first curve uses
no reflection (acceleration) potential, and the second uses 40 eV. For the second curve the flux is normalized
such that the kinetic energy flux is 109 eV cm−2 s−1 after the acceleration through the 40 eV potential.

Even with the extra energy gained from the ambipolar electric field, the FTICEHR of polar rain is roughly
an order of magnitude smaller than the kinetic energy flux. The effectiveness of polar rain decreases with
increasing characteristic energy for two reasons. First, higher-energy electrons penetrate to lower altitudes
where the neutral densities are higher. Second, the relative importance of inelastic collisions with neutrals
versus Coulomb collisions increases with increasing energy. One might expect the reflection potentials to
increase the effectiveness of polar rain since they will reflect some backscattered particles which would oth-
erwise escape without thermalizing. However, the reflection potentials also shift the polar rain spectrum up
in energy, thus decreasing the effectiveness of the primary electrons.

4. Comparisons to RISR-N Measurements

All of the RISR-N data shown below were collected using the 11-beam mode originally described by
Bahcivan et al. [2010, see their Table 1 for relevant radar parameters and their Figure 1 for the beam geom-
etry]. This mode interleaves an alternating coded pulse (AC) for the E region and lower F region with an
uncoded long pulse (LP) for the F region and topside. The data shown below is all LP data. The LP auto-
correlation functions were integrated for 5 min and then fit for electron density, electron temperature,
ion temperature, and line-of-sight velocity using ion-neutral collision frequencies computed from a Mass
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Figure 4. FTICEHR of polar rain with kinetic energy fluxes of
109 eV cm−2 s−1 at the top boundary as a function of characteristic
energy. The reflection (acceleration) potentials used are indicated in
the legend. Note that the peak differential energy flux of the polar
rain occurs at 20 and 20 + 40 eV for the cases without and with
the 40 eV potential, respectively. The peak photoelectron differ-
ential energy flux is at ∼ 20 eV, and thus, the photoelectrons are
comparable to 10 eV characteristic energy polar rain.

Spectrometer Incoherent Scatter (MSIS)
neutral atmosphere and ion composition
profiles taken from the model described
in this paper. The data presented below
is further postprocessed by interpolating
the fitted parameters from the different
beams onto a common altitude grid and
averaging six of the 11 beams. The six
beams chosen are the six highest eleva-
tion beams excluding the vertical beam
(i.e., beams 4–9 in the notation of Figure
1 of Bahcivan et al. [2010]). The lower ele-
vation beams do not reach very far above
the peak of the F region, and the vertical
beam is near the grating lobe limit of the
phased array and thus has much lower
gain and poorer signal-to-noise ratio. Due
to the differing beam elevations, the data
from different beams end at different max-
imum altitudes. Beams 4 and 6 end at 535
km, 5 ends at 570 km, 7 and 8 end at 602
km, and 9 ends at 654 km.

Figure 5 compares parameters from four
different model runs to RISR-N data as

a function of altitude at two different times. The top panels are for 2200 UT on 3 July 2012, and the bot-
tom panels are for 1000 UT on 4 July 2012. The solar zenith angles at these two times are 59.0◦ and 76.2◦,
respectively. Figure 6 plots RISR-N data and parameters from the same four simulations at 529 km as func-
tions of time. This altitude was chosen for comparison because it is the highest altitude with sufficiently
reliable RISR-N data. The first model run shown uses (1) zero FAC, zero electron temperature gradient at the
upper boundary, zero polar rain, and time-varying reflection potentials set using an automated method.
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Figure 5. Plots of RISR-N fitted and modeled parameters for the four simulations described in the text. The red, green,
orange, and purple lines correspond to simulations 1, 2, 3, and 4, respectively. The error bars represent two standard
deviations. (right) The electron (solid lines) and O+ ion (dashed lines) temperatures and (left) the electron densities.
(bottom) For 2200 UT on 3 July 2012 and (top) for 1000 UT on 4 July 2012.

VARNEY ET AL. ©2014. American Geophysical Union. All Rights Reserved. 8676



Journal of Geophysical Research: Space Physics 10.1002/2013JA019378

Figure 6. Various parameters from the four simulations for 3–7 July 2012 plotted at 529 km as functions of time. In each panel the red, green, orange, and purple
lines correspond to simulations 1, 2, 3 and 4, respectively. (first panel) RISR-N measured electron density (black dots with gray two standard deviation error bars)
and modeled electron density (solid lines). In this panel the red, orange, and purple lines on top of one another. (second panel) RISR-N measured electron (black
dots with gray, two standard deviation error bars) and ion (blue dots with cyan, two standard deviation error bars) temperatures, modeled electron (solid lines)
and O+ ion (dashed lines) temperatures, and the MSIS neutral temperatures (brown line). In this panel the solid red and green lines on top of one another. (third
panel) Solar zenith angle (black line, right ordinate) and the reflection potential (colored lines, left ordinate; the red and orange lines are on top of each other).
(fourth panel) Total FTICEHR (solid lines), FTICEHR associated with reflected photoelectrons (dashed lines), and FTICEHR associated with polar rain (dash-dotted
lines); the red and orange lines are on top of one another. Time 0 is 0 UT on 3 July 2012.

This variant of the code sets the reflection potential at each outer time step such that the absolute value
of the cold electron velocity at the upper boundary is minimized. These automatically determined reflec-
tion potentials should be interpreted as the lower bound necessary to prevent cold electron inflow. The
composition profiles from this first simulation were used to fit the RISR-N spectra. The other three simula-
tions use (2) automatically determined reflection potentials and 50 eV characteristic energy polar rain with
ΓR = 3 × 107 cm−2 s−1 at the upper boundary, (3) automatically determined reflection potentials and an
electron temperature gradient associated with an electron heat flux of qe;∇Te

= −5 × 108 eV cm−2 s−1 at the
upper boundary, and (4) no reflection potential and a FAC of JUB = −0.16 μAm−2 at the upper boundary.
Also plotted in Figure 6 are the automatically determined reflection potentials, the solar zenith angles (SZA),
and the three different types of FTICEHR. In the automatic code, after the new reflection potential is deter-
mined the suprathermal electron transport solver is called two more times with polar rain disabled and with
both reflection potentials and polar rain disabled. The heating rates from these extra calls are Q′

phe and Q∗
phe,

respectively, and they are used to compute the three different types of FTICEHR. These FTICEHRs are never
used by the model; they are simply diagnostics.

These four simulations also include two adjustments to the standard model that bring the electron density
profiles into better agreement with the RISR-N measurements. First, the temperature dependence of NO+

dissociative recombination reactions is assumed to be T−0.5
e , following Schunk and Nagy [2009], instead of

T−0.85
e as suggested by Richards [2011]. Both sources agree on rate at 300 K, but Te in the F1 region tends

to be much greater than 300 K, so the temperature dependence matters. The modified exponent results
in faster NO+ dissociative recombination, and thus a much smaller F1 region peak density. Second, the
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Figure 7. Measured and modeled plasma parameters at 458 km for 7–13 July 2010, presented in a similar format to Figure 6. Time 24 is 0 UT on 8 July 2010.

NRLMSISE-00 neutral O densities are multiplied by 0.8. This change lowers the F2 region densities by ∼20%.
The NRLMSISE-00 climatology is known to have problems reproducing the O/N2 ratios at auroral latitudes
during the polar summer and during times of large geomagnetic activity [see Hecht et al., 2012, and refer-
ences therein]. To these authors’ knowledge the reliability of NRLMSISE-00 composition in the summer polar
cap has not been thoroughly examined. These two adjustments have significant effects on the electron
density profiles but relatively small changes on the other parameters. The changes to the topside electron
temperatures and automatically determined reflection potentials are ∼50 K and ∼3 eV, respectively.

The electron temperatures from simulation 4 are significantly lower than the RISR-N measurements in the
topside, whereas the other three simulations show satisfactory agreement with the data. The electron
temperatures in simulation 3 are higher than those in simulation 1, but by amounts which are comparable
the error bars on the data. The automatically determined reflection potentials in simulation 2 are lower than
those in simulations 1 and 3 because the polar rain flux partially balances the escaping photoelectron flux.
Fewer reflected photoelectrons will lower the FTICEHR associated with the reflected photoelectrons, but the
polar rain itself adds a FTICEHR. In this case the net result is an increase in the total FTICEHR when polar rain
is included. Note that the FTICEHR associated with the polar rain of ∼ 6 × 108 eV cm−2 s−1 in simulation 2
is a fraction of the kinetic energy flux carried by the polar rain, ∼ 3.2 × 109 eV cm−2 s−1, as expected from
Figure 4. This extra FTICEHR does not translate into an increased temperature, however, because the polar
rain also creates additional electron density via impact ionization. The increased electron density means the
heat is divided among a larger number of electrons. The net effect is for electrons temperatures to decrease
slightly with the addition of polar rain.

The simulations for Figure 6 were run using a daily F10.7 index of 159.3 (the mean over this time period),
an 81 day average F10.7 index of 127, and an Ap index of 12.0 nT (which is median daily Ap over this time
period). Thus, this example represents medium-high solar conditions and medium-low geomagnetic con-
ditions. For comparison, Figure 7 presents RISR-N data and four simulations for 7–13 July 2010 using a daily
F10.7 index of 78.1, 81 day average F10.7 index of 77.8, and an Ap index of 3.0 nT. A somewhat lower alti-
tude was used for the comparison because of the decreased quality of the high-altitude data at lower solar
flux conditions. The four simulations are identical to the four simulations presented for the July 2012 case
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except for the solar conditions. Under these lower solar conditions the automatically determined reflection
potentials and the FTICEHR associated with the reflected photoelectrons both decrease. Even though the
polar rain number flux and characteristic energy are the same as in the higher solar conditions case, the
FTICEHR associated with this polar rain is lower in this case because the reflection (acceleration) potential
is lower. Nonetheless, the FTICEHR associated with this polar rain is approximately double of that associ-
ated with the reflected photoelectrons. In contrast, in the higher solar conditions case the two FTICEHRs are
approximately equal.

5. Discussion

The statistical study by Bekerat et al. [2007] demonstrated that some form of heat flux into the high-latitude
ionosphere usually exists. The polar cap examples presented in this paper are consistent with that conclu-
sion. Simulations with no form of electron energy flux from the upper boundary consistently underestimate
the electron temperatures compared to RISR-N measurements. Note these simulations must include a non-
physical downward FAC to remove the cold electron inflow and the energy flux associated with it. The IFM
simulations performed by Bekerat et al. [2007] add heat fluxes by imposing a temperature gradient at the
upper boundary, which is a standard practice in fluid modeling of the high-latitude ionosphere [Ganguli,
1996]. Yau et al. [1995] have argued that this practice is inconsistent with in situ measurements of the polar
wind, however; the electron heat fluxes point upward and are associated with escaping photoelectrons. The
simulations presented here without temperature gradients imposed at the upper boundary are all consis-
tent with that observation. Even when reflection potentials are present, the total electron heat flux points
upward due to the net escaping photoelectrons. Cases with a reflection potential have smaller upwards heat
fluxes than cases without; the reflection potential causes the ionosphere to retain energy that it would oth-
erwise lose. Simulations with reflected photoelectrons and simulations with both reflected photoelectrons
and polar rain and no other source of heat from the upper boundary can satisfactorily reproduce RISR-N
electron and ion temperature profiles in the 300–600 km region. The RISR-N measurements alone cannot
prove that this extra heat is coming from suprathermal electrons and not thermal conduction because the
two processes have very similar effects on the plasma temperatures in the 300–600 km region.

The model presented in this paper can heat the electrons using soft precipitation and reflected photoelec-
trons as well as temperature gradients imposed at the upper boundary. Soft precipitation and reflected
photoelectrons are valid ways to transport energy in a collisionless plasma, and thus, simulations using
only these two mechanisms to transport energy down from high altitudes are physically reasonable. The
simulations with temperature gradients applied at the upper boundary, however, must be regarded with
skepticism since temperature gradients are difficult to maintain as the plasma transitions to a collisionless
limit. Assuming steady state, the electron heat flow is field aligned, and taking the limit of small electron
mass, the general electron heat flow equation can be written as

kBpe

me
∇Te + HOT =

𝛿q′
e

𝛿t
, (53)

where the higher-order terms (HOT) are related to distortions of the electron distribution function from an
isotropic Maxwellian that are even functions of ce ≡ (

v − ue

)
. Neglecting the HOT and evaluating the colli-

sional term,
𝛿q′e
𝛿t

, assuming all species other than the electron have Maxwellian distributions and neglecting
terms of order me∕mi and me∕mn yields (18) [Schunk and Nagy, 2009]. In the collisionless limit, however,
𝛿q′e
𝛿t

→ 0 by definition, and (53) ceases to give any information about the electron heat flux. In the colli-
sionless limit the temperature gradient must be zero, or small if the HOT allow it, and the collisionless heat
flow could be anything. Note the collisionless heat flow is a function of distribution function distortions
from an isotropic Maxwellian that are odd functions of ce, and thus, it does not contribute to the HOT. The
thermal electron equations used in the present model cannot account for these collisionless heat flows. Col-
lisionless electron heat fluxes raise the high-altitude electron temperatures while still keeping the electron
temperature profile nearly isothermal. Thus, collisionless heat fluxes would have similar effects to soft pre-
cipitation, which is not surprising. Distorting the “thermal” electron distribution to add a downward heat
flow is equivalent to adding an additional “suprathermal" population of very soft precipitation.

As discussed above using (47), the FTICEHR is a useful albeit imperfect way to compare the effectiveness
of suprathermal electrons to heat fluxes applied at the upper boundary. Reflected photoelectrons add a
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FTICEHR in the range of 2–10 × 108 eV cm−2 s−1, depending on the reflection potential and the solar condi-
tions. The FTICEHR associated with polar rain is only 5–20% of the kinetic energy flux because higher-energy
electrons are inefficient at heating the electrons. Nonetheless, for typical number fluxes of a few times
107 cm−2 s−1 the FTICEHR will be a few times 108 eV cm−2 s−1. Thus, the FTICEHR associated with polar rain
and reflected photoelectrons tend to be of comparable magnitudes. Polar rain, however, will create many
more electrons through electron impact ionization than reflected photoelectrons. Dividing the heating
between a larger population of electrons can reduce the observed electron temperature increase, or even
produce an electron temperature decrease, with the addition of polar rain.

If temperature profiles extending well over 1000 km were available the effects of reflected photoelectron
and thermal conduction could be distinguished. Simulations with reflected photoelectrons and zero ther-
mal conduction become isothermal at the highest altitudes, but when thermal conduction is added the
temperature profiles are constantly increasing. Typical macroscopic particle-in-cell (mac-PIC) simulations of
the polar wind assume Boltzmannian electrons, which is only sensible if the electrons are isothermal [e.g.,
Wilson et al., 1990; Barakat et al., 1998a]. Few measurements of electron temperature profiles above 1000
km exist; these altitudes are challenging for incoherent scatter radars to reach given the low electron den-
sities in the polar cap. Kitamura et al. [2011] presented electron temperatures from the Interkosmos mission
extending to 3000 km. Although these measurements were compiled from multiple satellite passes and
thus cannot be regarded as instantaneous temperature profiles, they are nonetheless fairly isothermal.

Kitamura et al. [2012] observed reflection potentials with a median of ∼20 eV under solar maximum condi-
tions, which is somewhat lower than the potentials estimated in the examples presented in this paper. The
reflection potentials estimated by the automatic code which minimizes the electron velocity at the upper
boundary depend on the ion outflow. If the model is underestimating the light ion outflow then it will over-
estimate the required reflection potential. The model neglects all ion kinetic physics above the ion exobase,
temperature anisotropies, and centrifugal forces associated with convection, all of which could alter the
amount of light ion outflow. However, because the differential energy flux of the photoelectron distribution
peaks at ∼20 eV, the FTICEHR of the reflected photoelectrons does not change much as the reflection poten-
tial is increased beyond 20 eV, as illustrated by Figure 3. Thus, even if the reflection potentials in this paper
are overestimates, the associated FTICEHR are still reasonable.

Reflected photoelectrons cannot heat the nighttime ionosphere. The examples in this paper have focused
on times near the summer solstice because during this time the flux tubes will be continuously sunlit as they
convect around the polar cap. Figures 6 and 7 demonstrate that the plasma parameters change slowly with
solar zenith angle as long as the Sun is up. Thus, for summer solstice simulations, the errors introduced by
fixing the field line instead of following it around through a convection pattern are not very serious. In other
seasons, however, the field lines can cross the terminator, possibly multiple times per day depending on the
convection pattern. The plasma parameters are expected to be very different on the dayside and nightside
of the terminator [Kitamura et al., 2011; Glocer et al., 2012], and every time a field line crosses the terminator
in either direction it will exhibit transient behavior as it switches from one equilibrium to another. Nonethe-
less, RISR-N data from other seasons typically show the electron temperatures cooling down substantially at
night. The temperatures do not go all the way down to the MSIS neutral temperatures, however. The small
elevations in the nighttime electron temperatures could be explained by reasonable amounts of polar rain
or could be residual heat from a time when the field line was on the dayside or in the auroral oval which
has not dissipated in the time of convection to RISR-N’s location. Either of these mechanisms could plau-
sibly explain the nighttime RISR-N observations without needing to assume a significant amount of heat
conduction down from the upper boundary.

6. Conclusions

This paper examines the effects of different kinds of energy flows into the polar ionosphere using a 1-D
ionosphere-polar wind model developed for that purpose. The model allows energy to be input via ther-
mal conduction, soft precipitation, and potentials which reflect photoelectrons. The examples presented
confirm the findings of Wilson et al. [1997]; reflection potentials are required for sunlit polar cap field lines
to achieve zero current without needing large amounts of cold electron inflow or heavy ion outflow. The
model accounts for the extra heating from these reflected photoelectrons, and the flux tube integrated
changes in the electron heating rates (FTICEHR) associated with reflected photoelectrons range from 2 to
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10 × 108 eV cm−2 s−1. Soft precipitation is shown to be rather inefficient at heating the thermal electrons
because the cross sections for impact ionization of neutrals greatly exceed those for Coulomb collisions at
energies of ∼100 eV, but the associated FTICEHR can be comparable to those of reflected photoelectrons.

Simulations with reflected photoelectrons, zero FAC, and no other form of heat flux from the upper bound-
ary can satisfactorily reproduce RISR-N plasma temperature measurements up to 600 km. Simulations with
both reflected photoelectrons and polar rain can satisfactorily reproduce the measurements as well. Simu-
lations with no reflected photoelectrons and downward FAC, however, systematically underestimate RISR-N
temperature measurements. Reflected photoelectrons are a significant source of heat for the polar cap
ionosphere which should be incorporated into future high-latitude ionosphere models. This goal will require
a better understanding of the magnitudes and spatial distributions of the reflection potentials. In this paper
the reflection potentials were set by simply assuming zero cold electron inflow or outflow at the upper
boundary. The true physical processes governing the reflection potentials deserve further investigation.

Appendix A: Chemistry Model

In addition to all the ion-neutral reactions listed in Table 1 of Richards [2011], the model includes several
additional light ion reactions which are summarized in Table A1. Furthermore, the density of N

(
2D
)

, the
quenching of which is included as an electron heat source, is computed by assuming chemical equilibrium
using the reactions in Table A2.

Table A1. Additional Ion Chemistry Added Beyond the Richards [2011] Model

Light Ion Chemistry

Reaction Rate (cm3 s−1) Reference

H+ + O → O+ + H 2.2 × 10−11
√

TH+ Schunk and Nagy [2009]

O+ + H → O+ + O 2.5 × 10−11
√

Tn Schunk and Nagy [2009]

He+ + N2 → N+
2 + He 3.5 × 10−10 Huba et al. [2000a]

He+ + N2 → N+ + N + He 8.5 × 10−10 Huba et al. [2000a]
He+ + O2 → O+

2 + He 2.0 × 10−10 Huba et al. [2000a]
He+ + O2 → O+ + O + He 8.0 × 10−10 Huba et al. [2000a]

H+ + e → H + h𝜈 4.43 × 10−12
(

Te
300K

)−0.7
Huba et al. [2000a]

He+ + e → He + h𝜈 4.43 × 10−12
(

Te
300K

)−0.7
Huba et al. [2000a]

O+ + e → O + h𝜈 4.43 × 10−12
(

Te
300K

)−0.7
Huba et al. [2000a]

N+ + e → N + h𝜈 4.43 × 10−12
(

Te
300K

)−0.7
Huba et al. [2000a]

Table A2. Reactions Used to Compute Densities of N
(

2D
)

in Chemical Equilibrium

N
(

2D
)

Chemistry

Reaction Rate (cm3 s−1) Reference

N+
2 + O → NO+ + N

(
2D
)

1.33 × 10−10
(

Ti
300K

)−0.44
Richards [2011]

N+
2 + e → 2N

(
2D
)

2.2 × 10−7
(

Te
300K

)−0.39
Richards [2011]

NO+ + e → O + N
(

2D
)

3.4 × 10−7
(

Te
300K

)−0.85
Richards [2011]

N+ + O2 → O+
2 + N

(
2D
) ⎧⎪⎨⎪⎩

0.15 × 5.5 × 10−10
(

Ti
300K

)0.45
Ti ≤ 1000 K

0.15 × 9.5 × 10−10 Ti > 1000 K
Richards [2011]

N
(

2D
)
+ e → N

(
4S
)
+ e∗(+2.4 eV) 6.5 × 10−10

√
Te

300K
Aponte et al. [1999]

N
(

2D
)
+ O → N

(
4S
)
+ O 6.0 × 10−13 Aponte et al. [1999]

N
(

2D
)
+ O2 → NO + O 6.0 × 10−12 Aponte et al. [1999]

N
(

2D
)
+ O+

2 → NO+ + O 1.8 × 10−10 Richards [2011]
N
(

2D
)
+ O+

2 → N+ + O2 8.65 × 10−11 Richards [2011]
N
(

2D
)
+ O+ → N+ + O 1.3 × 10−10 Richards [2011]
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Appendix B: Derivation of the Ambipolar Electric Field

The thermal electron momentum equation is

𝜕

𝜕t

(
meneue

)
+ 1

A
𝜕

𝜕s

(
Ameneu2

e

)
+

𝜕pe

𝜕s
= −eneE∥ +

𝛿M′
e

𝛿t
, (B1)

where
𝛿M′

e

𝛿t
= 𝛿Me

𝛿t
+ meue

𝛿ne

𝛿t
. A suprathermal electron momentum equation is obtained by apply-

ing 2𝜋me ∫ 1
−1 d𝜇 ∫ ∞

0 d 𝜇 to the time-dependent suprathermal electron transport equation (i.e., (13)

plus A
v
𝜕Φ
𝜕t

)
. The result is

𝜕

𝜕t

(
mensus

)
+ 1

A
𝜕

𝜕s

(
As

)
+

𝜕s

𝜕s
= −ensE∥ +

𝛿M′
s

𝛿t
(B2)

where the relevant moments of the suprathermal electron spectrum are

s ≡ 2𝜋me ∫
∞

0
d ∫

1

−1
d𝜇

1 − 𝜇2

2
Φ (B3)

s ≡ 2𝜋me ∫
∞

0
d ∫

1

−1
d𝜇

3𝜇2 − 1
2

Φ, (B4)

and
𝛿M′

s

𝛿t
is 2𝜋me ∫ 1

−1 d𝜇 ∫ ∞
0 d 𝜇 applied to all the collisional terms.

Combining the thermal electron momentum equation, the suprathermal electron momentum equation,
the ion momentum equations, and the definition of current density yields a generalized Ohm’s law for
the plasma.

me

e

𝜕J∥
𝜕t

+ 1
A

𝜕

𝜕s

[
A

(∑
i

meniu
2
i − meneu2

e −s

)]
+ 𝜕

𝜕s

(∑
i

me

mi
pi − pe − s

)
(B5)

=

(∑
i

me

mi
ni + ne + ns

)
eE∥ +

∑
i

me

mi

𝛿M′
i

𝛿t
−

𝛿M′
e

𝛿t
−

𝛿M′
s

𝛿t
.

This Ohm’s law is readily simplified with three approximations. First, neglect terms of order me

mi
. Second,

assume the thermal electron and ion velocities are much less than the electron thermal speed,√
kBTe

me
≈ 175 km/s for a 2000 K plasma. This approximation means that the meniu

2
i and meneu2

e terms are
both negligible compared to pe. Third, take the steady state limit and solve for the ambipolar electric field.

E∥ =
−1

e
(

ne + ns

) { 1
A

𝜕

𝜕s

(
As

)
+ 𝜕

𝜕s

(
pe + s

)
−

𝛿M′
e

𝛿t
−

𝛿M′
s

𝛿t

}
(B6)

This expression can be simplified even further by substituting the steady state limit of the suprathermal
electron momentum equation:

E∥ =
−1
ene

{
𝜕pe

𝜕s
−

𝛿M′
e

𝛿t

}
. (B7)

Expanding the electron collision terms results in

E∥ =
−1
ene

{
𝜕

𝜕s
pe − mene

∑
i

𝜈ei

(
ui − ue

)
− mene

∑
n

𝜈en

(
un − ue

)
(B8)

−
me

kBTe

(
3
5

∑
i

𝜈ei +
∑

n

𝜈enzen

)(
5
2

ũepe − 𝜅e

𝜕Te

𝜕s

)
− se − meue

𝛿ne

𝛿t

}
.

The above equation uses the Burgers linear eight-moment collision term for electron-ion and
electron-neutral interactions in the limit of small me

mi
and small me

mn
[Schunk and Nagy, 2009, equation
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(5.127a)], and it uses (18) for the electron heat flow. The momentum transfer from suprathermal electrons to
thermal electrons is

se(s) = 2𝜋me

{
∫

1

−1
d𝜇 ∫

∞

0
d 𝜇

me

√
me

2 L()Φ(s, , 𝜇) (B9)

+∫
1

−1
d𝜇 ∫

∞

0
d 3𝜇2 − 1

2
D()Φ(s, , 𝜇)

}
.

Every term in (B8) goes to 0 as me → 0 except the electron pressure gradient term. This explains why the
eight-moment TRANSCAR model neglects these terms even though it includes all the other eight-moment
collision terms [Lilensten and Blelly, 2002]. We have evaluated all these other terms with the real electron
mass for the reference simulation and found that all except for one are at least 2 orders of magnitude smaller
than the electron pressure gradient term, and thus can be omitted. The one extra term we will retain is the
thermal conduction contribution to electron thermal diffusion. Even though me is small, 𝜅e is huge, so this
term can be as much as ∼50% of the thermal electron pressure gradient term. With this term included, the
ambipolar electric field is

E∥ =
−1
ene

{
𝜕

𝜕s
pe +

me

kBTe

(
3
5

∑
i

𝜈ei +
∑

n

𝜈enzen

)
𝜅e

𝜕Te

𝜕s

}
, (B10)

which is equivalent to (22). The models of Schunk and Walker [1969], St.-Maurice and Schunk [1977], and
Conrad and Schunk [1979] are other examples of formulations where electron thermal diffusion is included
alongside electron pressure gradients in expressions for the ambipolar electric field.
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