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Abstract We introduce and analyze the first data from an array of closely spaced Global Positioning
System (GPS) scintillation receivers established in the auroral zone in late 2013 to measure spatial and
temporal variations in L band signals at 100–1000 m and subsecond scales. The seven receivers of the
Scintillation Auroral GPS Array (SAGA) are sited at Poker Flat Research Range, Alaska. The receivers produce
100 s scintillation indices and 100 Hz carrier phase and raw in-phase and quadrature-phase samples. SAGA
is the largest existing array with baseline lengths of the ionospheric diffractive Fresnel scale at L band. With
an initial array of five receivers, we identify a period of simultaneous amplitude and phase scintillation. We
compare SAGA power and phase data with collocated 630.0 nm all-sky images of an auroral arc and
incoherent scatter radar electron precipitation measurements, to illustrate how SAGA can be used in
multi-instrument observations for subkilometer-scale studies.

1. Introduction

In the auroral zone, energetic particle precipitation in the upper atmosphere often leads to variations in
plasma density from a few kilometers down to 100 m scale size. Poker Flat Research Range (PFRR), Alaska, is an
important research site for investigating the dynamics of the high-latitude upper atmosphere. Operated by
the University of Alaska at Fairbanks, PFRR hosts a suite of geospace sounding and sensing instruments includ-
ing the Poker Flat Incoherent Scatter Radar (PFISR) [Semeter et al., 2009], optical all-sky imagers (ASI) [Hampton
et al., 2013], scanning Doppler imagers [Conde and Smith, 1997; Anderson et al., 2013], and a launch site for
rocket sounding [Zettergren et al., 2014]. Most of these instruments make measurements at about 10–100 km
scales or in situ point measurements.

However, the subkilometer-scale ionospheric irregularities can cause scintillation, short-term signal fading,
and rapid variations in the phase of transionospheric signals, from Global Navigation Satellite Systems (GNSS)
such as the Global Positioning System (GPS). At high latitudes, phase scintillations are observed more often
than amplitude scintillations and are due to a variety of physical instability mechanisms in both the E and F
regions of the ionosphere. The temporal behavior of diffractive scintillations depends on the Fresnel length
of the scintillations, the drift speed of the ionosphere, and the relative velocities of the satellites and receivers
[Kintner et al., 2004].

There have been a number of significant high-latitude studies of scintillation using GPS [Mitchell et al., 2005;
Skone et al., 2009; Grzesiak and Wernik, 2009; Prikryl et al., 2010; Alfonsi et al., 2011; Wang et al., 2012]. Most GPS
high-latitude scintillation studies were made with single scintillation receivers or a network with baselines of
one to hundreds of kilometers and, therefore, were not able to investigate the local spatial spectrum of the
irregularities or the drift speeds.

Until recently, there was no dedicated scintillation monitoring array at PFRR and none operating routinely
at subkilometer baselines anywhere. We present our installation and systematic data collection, processing,
and sharing system for study of the spatial-temporal properties of GPS scintillations at high latitudes using
a closely spaced multireceiver array deployed in the northern auroral zone: the Scintillation Auroral GPS
Array (SAGA).
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Figure 1. Map of array location with true north (TN) to the top (courtesy of Google Maps). Red compass arrow indicates
magnetic north (MN). Pin colors correspond to the curves that will be used in Figure 5 later. Inset: Alaska.

2. Scintillation Auroral GPS Array

The purpose of SAGA is to quantify the two-dimensional space-time distribution of scintillations and the
ionospheric irregularities that produce them, connecting them to the time history of auroral structuring,
larger-scale electron gradients, electrodynamics, and winds. Atmospheric and Space Technology Research
Associates (ASTRA) Connected Autonomous Space Environment Sensors (CASES) receivers [Crowley et al.,
2011; O’Hanlon et al., 2011] based on technology by Humphreys et al. [2010] are used. The six receivers estab-
lished by the team are located at the westernmost sites identified on the map of PFRR in Figure 1. Each has a
site ID (“IIT-”) labeled on the map. In addition, ASTRA has a receiver at the site marked in red, for a total of seven
receivers in the array. Table 1 summarizes the configuration at the present time. The array is spaced over the
ground in two dimensions, with 200 m to 3100 m baselines.

Each scintillation monitor is a software-based receiver connected to an external antenna on the roof of the
building site and is powered and networked with a basic Linux operating system interface. The data types
collected fall into three categories: scintillation indices with a cadence of 100 s, low rate with a cadence of
1 s, and high rate with a cadence of 0.01 s. The indices include calculated parameters of amplitude and phase
scintillation S4 and 𝜎𝜙, decorrelation time 𝜏0, and scintillation power ratio (SPR). S4 and 𝜎𝜙 are the normal-
ized standard deviation of signal intensity and phase, respectively, computed over 100 s intervals as currently
configured. The decorrelation time 𝜏0 is the time shift for which the autocorrelation of the time-varying mul-
tipath drops by 1∕e [Humphreys et al., 2009]. The SPR computes the ratio of spectral power in a user-selected
narrow band to the total power measured, primarily used for selective high-rate data collection in power- or

Table 1. SAGA Receiver Locations, in WGS-84 Coordinates

Site ID Receiver ID Latitude (◦N) Longitude (◦E) Height (m)

IIT-1 GRID108 65.1265 −147.4968 210

IIT-3 GRID163 65.1248 −147.4900 210

IIT-9 GRID160 65.1262 −147.4767 211

IIT-11 GRID162 65.1169 −147.4623 422

IIT-13 ASTRA rxa 65.1186 −147.4329 519

IIT-15 GRID161 65.1287 −147.4853 212

IIT-16 GRID154 65.1279 −147.4815 208

aNot available as part of the online database.

storage-constrained environments
[O’Hanlon et al., 2011]. The low-rate
data includes typical GPS observ-
ables such as pseudorange and carrier
phase, receiver position, satellite IDs
(PRNs) tracked, azimuth and ele-
vation angle, and calculated total
electron content (TEC). The high-rate
data include carrier phase, as well as
in-phase (I) and quadrature-phase (Q)
accumulations.

The scintillation and low-rate data are
streamed in binary format over the
network to a server database. The

DATTA-BARUA ET AL. SCINTILLATION AURORAL GPS ARRAY 3640



Geophysical Research Letters 10.1002/2015GL063556

Figure 2. The 8 December 2013 (a) AE indices [World Data Center for Geomagnetism, Kyoto, 2014], (b) SAGA S4 index,
and (c) SAGA 𝜎𝜙 QuickLook plots. Color and vertical scale of Figure 2b both indicate S4 value to emphasize scintillating
periods. Likewise for Figure 2c.
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Figure 3. PFISR electron density Ne and temperature Te measurements versus time and altitude for the beam nearest to
the raypath between PRN 23 and SAGA.

database is searchable by a web interface for viewing and downloading, publicly available at http://apollo.
tbc.iit.edu/~spaceweather.

The streamed data are processed daily to generate QuickLook plots and test for potential scintillation events.
Phase scintillation index values from each receiver are filtered to mask satellites below 30◦ elevation. Then the
𝜎𝜙 values below a manually predefined threshold (currently 0.5 rad, almost 3 times the quiet-time average
𝜎𝜙) are discarded. The results are plotted on the website as “QuickLook” plots.

The scintillation indices are used to identify time periods of interest, but detailed analyses with SAGA rely on
the high-rate data. Time intervals during which 𝜎𝜙 exceeds a higher threshold are recorded (currently set to
one standard deviation above the average 𝜎𝜙 for the given day). For these start and end time intervals, the
high-rate data for the corresponding whole hour are downloaded from the receivers. The high-rate data are
unpacked from binary into text format, to be used for scientific analyses.

For individual studies, the 100 Hz high-rate phase data are processed as detailed by Deshpande et al. [2012].
These filtering methods are consistent with the standard methods of filtering high-rate GNSS observations
as described by van Dierendonck and Hua [2001]. At present, to remove the receiver clock errors, carrier and
IQ phase of a nonscintillating reference channel are subtracted from those of a possibly scintillating chan-
nel. The differenced carrier phase 𝜙c and the differenced IQ phase 𝜙iq are then added together to obtain the
sum phase 𝜙. A third-order polynomial fit �̃� of phase 𝜙 is subtracted to remove satellite geometry effects
and obtain phase 𝜙

′
with mostly high-frequency components. A high-pass sixth-order Butterworth filter

with cutoff frequency 0.1 Hz for data intervals longer than 60 s (or 0.2 Hz otherwise) then removes any
residual low-frequency components from 𝜙

′
and produces the final detrended phase 𝜙f . To detrend power,

the raw power Pr of a scintillating PRN is filtered by a sixth-order low-pass Butterworth filter to obtain a
low-pass-filtered output PLPF. Dividing Pr by PLPF produces the high-pass-filtered power Pf . We use standard
filtering techniques to generate scintillation indices and in our current analysis, but there are other methods
yielding alternate indices [Mushini et al., 2012]. With the high-rate data available from SAGA, future studies
may investigate alternate filtering methods.

3. Sample Results

An example of the scintillation indices is shown in Figure 2. Figure 2a is a plot of the Provisional AE Indices
provided by the World Data Center for Geomagnetism, Kyoto [2014]. Figures 2b and 2c show the scintillation

DATTA-BARUA ET AL. SCINTILLATION AURORAL GPS ARRAY 3642

http://apollo.tbc.iit.edu/~spaceweather
http://apollo.tbc.iit.edu/~spaceweather


Geophysical Research Letters 10.1002/2015GL063556

Figure 4. ASI 630.0 nm emission auroral images and SAGA array PRN 23 ionospheric pierce points (IPPs) mapped to
250 km altitude. Inset in Figure 4a shows full image over Alaska. (a) 03:44:02 UT, (b) 03:44:14 UT, (c) 03:44:27 UT, and
(d) 03:44:39 UT. PFISR beam at 250 km shown as a yellow cross. Orange boxes are shown for emphasis.

measurements S4 and 𝜎𝜙 from each of the six publicly available receivers that were operational at the time.
The color scales in Figures 2b and 2c are mapped to the vertical axis values to emphasize elevated scintillation.

On 8 December 2013 there was a geomagnetic storm due to a corotating interaction region in the solar
wind and coronal hole high-speed stream [Space Weather Prediction Center, 2013]. The Provisional AE index
reprinted in Figure 2a from World Data Center for Geomagnetism, Kyoto [2014] shows periods of geomagnetic
disturbance from 00:00 to 05:00 UT, 07:00 to 09:00 UT, and 16:00 to 20:00 UT. Elevated𝜎𝜙 scintillation activity in
Figure 2c corresponds to the periods of activity denoted by the AE index, with the exception of 00:00–02:00 UT.
Notably, Figure 2b shows there is significant amplitude scintillation (S4 = 0.4) close to 04:00 UT.

This date occurred during a PFISR Ion-Neutral Observations of the Thermosphere (PINOT) campaign
[Makarevich and Bristow, 2014]. Figure 3 shows the PFISR electron density Ne and temperature Te data for
the beam nearest in the sky to the scintillating GPS signal that will be studied, from 02:00 UT to 06:00 UT. In
Figure 3a a significant density enhancement is measured from 03:45 to 04:15 UT at altitudes above 200 km.
For this same time through an hour later, high electron temperatures are measured at the F region altitudes.
The measurements from PFISR indicate soft electron precipitation at F region altitudes.

The all-sky imager (ASI) at Poker Flat operates during nighttime from August to April and included this night.
Correlation between auroral structuring and scintillation has been reported before [Little and Maxwell, 1952;
Smith et al., 2008; Garner et al., 2011; Hampton et al., 2013], but we illustrate this event in detail. Figures 4a–4d
show consecutive 1 s exposures taken of the 630.0 nm (red line) emission with the ASI during the onset of
significant scintillation at 03:44:02, 03:44:14, 03:44:27, and 03:44:39 UT. The ASI pixels are mapped to latitude
and longitude locations assuming that the red-line emission takes place at 250 km altitude. The map inset
in Figure 4a shows the full region imaged over Alaska with a small orange box showing the area of detail.
The white spot to the southwest of the imaged area in the inset is light contamination from the moon. Each
subplot zooms in on the image within a 1◦ longitude and 0.5◦ latitude span. The raw uncalibrated intensities
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Figure 5. (a) I- and Q-based detrended power. (b) Final phase after detrending and filtering 𝜙f from 03:43:40 to
03:44:50 UT at 100 Hz. Time intervals of the ASI data of Figure 4 are marked.

are plotted in grayscale. In each map, the ionospheric pierce point (IPP) at 250 km altitude for the raypath of the
signal from PRN 23 received by each SAGA receiver is shown as a colored circle. An orange box surrounds the
SAGA IPPs for visual emphasis. A yellow cross marks the location of the nearest PFISR beam passing through
250 km altitude, whose data were shown in Figure 3. Though not visible at this level of zoom, the three closest
operational SAGA sites’ raypaths (IIT-1, IIT-3, and IIT-15) fall within one pixel of the ASI image.

An auroral arc is visible stretching from northwest to southeast. In every instant the PFISR beam appears to
be passing right through the auroral arc. At 03:44:02 UT, the SAGA IPPs are just to the south of the arc. Twelve
seconds later (Figure 4b), the arc brightens, and the IPPs seem to be on the southern edge of it. The bright
area has faded significantly by 03:44:27 UT, such that the arc appears to retreat slightly northward away from
the IPPs (Figure 4c). In the last image, Figure 4d, the arc has faded further with the IPPs still appearing to the
south of the southern edge.

Figures 5a and 5b, respectively, show SAGA 100 Hz detrended I and Q power and detrended filtered phase
[Deshpande et al., 2012] from 03:43:40 UT to 03:44:50 UT. The colors of the curves correspond to the markers
in the map of Figure 1 and to the IPPs shown in Figure 4. The time intervals during which red-line ASI expo-
sures were taken are indicated with vertical lines. During this time, amplitude scintillation occurs, as seen by
the increased variance in the signal power in Figure 5a at 03:44:12 and 03:44:40 UT. In the 70 s time inter-
val of Figure 5b, variations in the signal phase received across the array become more clearly visible at about
03:44:12 UT, simultaneous with one interval of amplitude scintillation but not the other.

Consider the 5 rad peak in I and Q phase that occurs around 03:44:12 UT. Each of the curves is similar to
each other but time shifted. From the map, it can be observed that the receivers that are collinear on a
northwest-southeast axis (sites 13 and 15; sites 1, 3, and 11) have almost identical time series. This orientation
aligns with the arc edge. Notably, both Figures 4b and 4d were taken during amplitude scintillation periods,
but the one simultaneous with the significant phase variation (Figures 4b) showed a brightening of the arc
while the one without phase scintillation did not (Figures 4d).

The phase measurements are time correlated and somewhat spatially correlated. The former feature allows us
to estimate irregularity drift velocities projected along the direction of motion of the IPPs. Cross-correlation
analyses between pairs of receivers have been done [Datta-Barua et al., 2014] using methods described by
Basu et al. [1991] and Costa et al. [1997]. Our initial estimate of the ionospheric drift velocity based on SAGA
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measurements is a northwestward motion of about 1100 m/s. Comparisons with PFISR velocities show good
agreement. A quantitative analysis of the time period shown in Figures 5a and 5b has been carried out using
a Rytov approximation, and both the cross-correlation analysis and quantitative analysis are the subject of a
forthcoming paper in preparation. While a detailed description of that analysis is beyond the scope of this cur-
rent paper, the methods are based on Yeh and Liu [1982] and Taylor [1975]. The results of that analysis produced
estimations of statistical properties of the irregularities including the following: a spectral index estimate of
∼ 3.2; the standard deviation of irregularity density of ∼ 1.0 × 1011e∕m3; a thickness of the irregularity layer
of ∼ 200 km; and the top of the irregularity layer located at ∼ 500 km altitude. These results are consistent
with the PFISR observations in Figure 3 and indicate that the scintillations may be due to soft F region elec-
tron precipitation. In this case the red-line auroral arc observations may be interpreted as originating from the
bottom of the precipitation region.

4. Conclusion

Since the end of 2013, the largest existing array of seven closely spaced GPS L1/L2C scintillation monitors
has been established at PFRR. Six of these provide ionospheric scintillation parameters and position esti-
mates routinely, available to the public. For the event shown, an auroral arc crossing the raypath of the
GPS L1 signal appears to be related to scintillation, with interreceiver phase similarities corresponding to
the northwest-southeast orientation of the arc. There are two instances of significant power fluctuation, one
with and one without phase scintillation, not usually correlated with arcs. Investigation with PFISR data is
ongoing, and a detailed, quantitative study of this event will be the subject of a follow-on paper, obtaining
two-dimensional drift velocities, spectral index, irregularity density distribution, and thickness of the irreg-
ularity layer. Used in conjunction with the complementary instruments and sensors collocated at PFRR, the
SAGA data provide an unprecedented high-resolution view of the effects of auroral processes on GPS phase
measurements.
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