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a b s t r a c t

In this paper, we analyze the temporal variability of the propagation and dissipation of two southeast

(SE)ward-propagating gravity waves (GWs) observed by the Poker Flat Incoherent Scatter Radar (PFISR)

on 13 December 2006. We determine the GW vertical wavelengths as a function of altitude along each

constant wave phase line, then extract the neutral, horizontal winds every �10212 min (one-half of a

wave period) along the direction of GW propagation as a function of altitude using an accurate,

dissipative GW dispersion relation and MSIS temperatures. We find that the neutral wind in the

northwest (NW) direction above PFISR was composed of a slowly varying ‘‘mean’’ of �� 150 m=s plus a

slowly moving, large-scale wave with a period of 3–5 h. These winds added at z�190 km, creating a

large NW wind of �� ð2002250Þm=s. This wind caused these two GWs to become evanescent or nearly

evanescent some of the time, although their amplitudes increased up to z�2102240 km. We find that

the winds accelerated in the SEward direction by �1002150 m=s in 30–40 min at z�190 km. We

hypothesize that these accelerations are thermospheric body forces caused by the dissipation of

SEward-propagating GWs excited by mountain wave breaking near the mesopause NW of PFISR. This

hypothesis is supported by tropospheric winds and the consistency of the observed GW periods. Finally,

we ray trace these GWs through the extracted winds, and using a simple single-ion plasma model,

compare the theoretical and measured plasma responses. We find that theory agrees reasonably well

with observations.

& 2009 Elsevier Ltd. All rights reserved.

1. Introduction

As a gravity wave (GW) propagates upwards in the thermo-
sphere, its amplitude grows rapidly until it reaches its dissipation
altitude, whereupon its amplitude decays rapidly with altitude
and time. Although a GW’s horizontal wavelength, lH , remains
constant with altitude if the winds and temperatures change
only with altitude, its vertical wavelength lz changes with
altitude as a result of changing winds, temperatures, and
dissipation due to kinematic viscosity and thermal diffusivity
(e.g., Hines, 1960; Pitteway and Hines, 1963; Richmond,
1978). This refraction is observed as changes in the slopes
of a GW’s lines of constant phase with altitude and time, since a
GW’s phase is proportional to expði

R
ðm dz�or dtÞÞ, where m ¼

2p=lz is the vertical wavenumber and or is the observed wave
frequency.

Until recently, GW propagation in the thermosphere with
dissipation was mainly accomplished with multi-layer techniques

(Midgley and Liemohn, 1966; Volland, 1969; Klostermeyer,
1972; Hickey and Cole, 1988), numerical simulations (Richmond,
1978; Francis, 1973; Zhang and Yi, 2002), and approximate or
numerical solutions to complex dispersion relations (Pitteway and
Hines, 1963; Yeh et al., 1975; Hickey and Cole, 1987). Recently, a
more complete and accurate, analytic expression was derived for
the amplitude decay and dispersion of a GW (Vadas and Fritts,
2005, hereafter VF2005). This description includes kinematic
viscosity and thermal diffusivity, but neglects ion drag and
wave-induced diffusion. Ion drag is unimportant during the night
for GWs with periods less than a few hours and for GWs with
periods less than an hour during the day (Hines and Hooke,
1970; Francis, 1973; Hocke and Schlegel, 1996; Gossard and
Hooke, 1975). For lH � 2002400 km, wave-induced diffusion
significantly affects those GWs with periods longer than an
hour (DelGenio and Schubert, 1979). Since GWs that reach
z�200 km from the lower atmosphere under varying winds have
periods less than an hour (Fritts and Vadas, 2008), neglecting ion
drag and wave-induced diffusion is a good approximation for
these waves.

The understanding of the propagation and dissipation of
a GW in the thermosphere requires an accurate dissipative GW
dispersion relation, lH , and the GW’s observed period tr , as well as
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the background neutral winds and temperatures. Conversely, if lH ,
tr , and lzðzÞ are known instead along with the background
temperatures, then the average, background, horizontal neutral
wind along the GW propagation direction can be calculated using
a GW dissipative dispersion relation. Observations of GWs with
the Poker Flat Incoherent Scatter Radar (PFISR), which are
observed as traveling ionospheric disturbances, or TIDs, have the
capability of providing lH , tr , and lzðzÞ.

A recent PFISR experiment that included 10 essentially
simultaneous look directions observed a southeast (SE)ward-
propagating GW on 13 December 2006 from 2200–2400 UT
(Nicolls and Heinselman, 2007). Using a temporally averaged
lzðzÞ profile that neglected corrections due to range-smearing and
other effects, and the GW dissipative dispersion relation
derived in VF2005, Vadas and Nicolls (2008) calculated this
GW’s intrinsic frequency profile, oIrðzÞ, which varied with altitude
primarily because of Doppler-shifting from vertically varying
background, neutral winds in the thermosphere. They then
extracted the average, neutral, background, horizontal winds from
z�1702250 km along the GW propagation direction using MSIS
temperatures. They also used the mean component of the anti-
parallel ion velocity, Vlos, to calculate the neutral wind along the
magnetic meridian, although this calculation was somewhat
uncertain because diffusion was neglected and errors on the
velocity measurements were quite large. They found that
although the neutral winds at z�170 km and zX220 km were
consistent with tides, with UH�� 150 m=s, the winds at
z�1802190 km were much larger, with UH�� 250 m=s. This
sharp increase and decrease in the neutral winds occurred over
a vertical depth of only �40 km, and were unlikely due to tides
because tidal amplitudes are viscously limited above z�150 km
(e.g., Roble, 1995). However, the temporal evolution of this strong,
thermospheric wind was not calculated; thus, the underlying
temporal evolution of this neutral wind was not studied.

The purpose of this paper is to calculate the temporal
evolution, acceleration, and individual components of the thermo-
spheric, neutral, horizontal wind over a 4-h period on
13 December at altitudes of z�1802250 km using GW dissipative
theory and PFISR TID-measurements with range-smearing correc-
tions, and to estimate a possible source of these observed GWs.
We will also compare the measured plasma response with that
estimated from a simple plasma model and ray tracing. We
analyze the temporal evolution using the same GW measured by
PFISR as discussed in Nicolls and Heinselman (2007) and Vadas
and Nicolls (2008), but extend the analysis backwards in time by
2 h to include a second GW propagating in nearly the same
direction. In Section 2, we briefly review the dissipative GW
dispersion relation and amplitude decay expressions we use here.
Section 3 provides details of the PFISR observations for the GWs
we analyze here and review the process by which we extract
GW vertical wavelengths from the lines of constant phase
measured in different look directions. In Section 4, we use the
PFISR measurements and GW dissipative theory to calculate the
temporally and spatially varying background neutral winds and
wind accelerations that these GWs propagated through in the
thermosphere. We also investigate the slowly varying mean wind
and a large-scale, slowly moving wave, both of which are
components of the extracted neutral winds. Section 5 shows
the horizontal and vertical velocity perturbation profiles as
a function of altitude for these GWs determined via ray
tracing these GWs through the calculated, background, neutral
winds. We also calculate the plasma response to these GWs using
a simple, single-species ion model, and compare with the
observed response. Section 6 provides a hypothesis for a possible
source of these GWs and of the calculated thermospheric
accelerations.

2. GW dissipative theory

VF2005 derived an analytic expression for the GW anelastic
dispersion relation of a high-frequency, dissipating GW in the
thermosphere by postulating that the GW solution (after scaling
the mean density r out of the fluid variables appropriately) from a
temporally localized source can be written as decaying explicitly
in time and implicitly in altitude. This is equivalent to setting the
wave frequency, rather than m ¼ 2p=lz (as in all previous
derivations, e.g., Pitteway and Hines, 1963) to be complex. Unlike
the inseparable complex equation one obtains if m is assumed
complex, this approach yields a complex dispersion relation which
is analytically separable into a real GW dispersion relation and a
real expression for the GW amplitude’s decay in time.

This dispersion relation includes the dissipative effects of
kinematic viscosity and thermal diffusivity, and assumes that ion
drag and wave-induced diffusion can be neglected, which is a
good assumption for GWs with periods less than an hour during
the daytime. Unlike previous solutions which were not valid for
strong dissipation because they were derived from perturbation
expansions in kinematic viscosity (e.g., Pitteway and Hines, 1963),
this solution is accurate during strong dissipation, and is exact for
a high-frequency GW with a phase speed much less than the
speed of sound and which propagates through an atmosphere
with constant temperature, wind, kinematic viscosity, and Prandtl
number. In order for the kinematic viscosity to be considered
locally constant, this GW must have lz54pH during strong
dissipation, where H is the neutral density scale height. This
dispersion relation is (VF2005)

m2 ¼
k2

HN2

o2
Irð1þ dþ þ d2=PrÞ

1þ
n2

4o2
Ir

k2
�

1

4H2

� �2
"

�
ð1� Pr�1

Þ
2

ð1þ dþ=2Þ2

#�1

� k2
H �

1

4H2
, (1)

where k ¼ ðk; l;mÞ is the GW zonal, meridional, and vertical
wavenumber components in geographic coordinates, respectively,
ðlx ¼ 2p=k; ly ¼ 2p=l; lz ¼ 2p=mÞ is the wavelength vector,
k2

H ¼ k2
þ l2, k2

¼ k2
H þm2, N is the buoyancy frequency, Pr is

the Prandtl number, m is the viscosity coefficient, n ¼ m=r is the
kinematic viscosity, r is the mean density, H ¼ �rðdr=dzÞ�1 is
the density scale height, d ¼ nm=HoIr , and dþ ¼ dð1þ Pr�1

Þ.
Additionally, the intrinsic frequency is oIr ¼ or � kU � lV , which
can be rewritten as

oIr ¼ or � kHUH , (2)

where or ¼ 2p=tr is the constant, ground-based or observed
frequency, UH ¼ ðkU þ lVÞ=kH is the background, neutral wind
along the direction of GW propagation, and U and V are the zonal
and meridional neutral wind components, respectively, in geo-
graphic coordinates.

Additionally, assuming negligible wave reflection from viscos-
ity, which can cause a GW to partially reflect downwards as it
continues to propagate upwards (Midgley and Liemohn, 1966;
Yanowitch, 1967; Volland, 1969), a GW’s amplitude grows in
altitude as / 1=

ffiffiffiffi
r

p
, but decays from dissipation as expðoIitÞ,

where oIi is the dissipative decay rate (VF2005):

oIi ¼ �
n
2

k2
�

1

4H2

� �
½1þ ð1þ 2dÞ=Pr�

ð1þ dþ=2Þ
. (3)

The ray-trace code which utilizes these expressions is described
in detail in Vadas (2007). It is important to note that although
lzðzÞ (or UHðzÞ) can be determined from Eq. (1), ray tracing is
necessary to determine a GW’s amplitude as a function of altitude
and/or time via Eq. (3).
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The vertical group velocity of a dissipating GW is (Eq. (C3) from
VF2005)

cgz
¼
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oIrB
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where nþ ¼ nð1þ Pr�1
Þ and
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þ
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When dissipation is negligible, d�n�0. In this case, the
GW dispersion relation, Eq. (1), reduces to the well-known
expression

m2 ¼
k2

HN2

o2
Ir

� k2
H �

1

4H2
, (6)

and the vertical group velocity, Eq. (4), reduces to

cgz
’ �

1

oIr

mk2
HN2

ðk2
þ 1=4H2

Þ
2

. (7)

In this case, mo0 ðm40Þ denotes an upward-propagating
(downward-propagating) GW, since cgz40 ðcgzo0Þ. However,
when a GW is strongly dissipating, mo0 may denote either a
downward or an upward-propagating GW from Eq. (4), as we will
see for a specific GW in a moment.

An important assumption used to derive these GW dissipative
expressions is that the background wind shears are not too large
(Vadas and Fritts, 2006, hereafter VF2006):

jlzjo2pjUH=ðdUH=dzÞj. (8)

A typical F region GW with lz ’ 1002300 km (e.g., Djuth et al.,
1997) will refract according to Eq. (8) if dUH=dzoUHð0:0220:06Þ
m=s=km, which is a wind shear of dUH=dzoð4212Þm=s=km for a
background wind of UH ’ 200 m=s. A GW’s lz may only reflect the
actual wind if Eq. (8) is satisfied everywhere in the thermosphere;
otherwise, lz may instead reflect the average, neutral wind.
Because of strong viscous damping, however, large neutral vertical
wind shears cannot be maintained for a long time in the
thermosphere; neutral horizontal winds in excess of tidal winds
dissipate rapidly, within 60 min at z�190 km (see Section 6.3).

Finally, a GW’s dissipation altitude can be estimated via the
quenching criterion (VF2006):

ndiss ’
jkHmjN

2Hðk2
þ 1=4H2

Þ
5=2

. (9)

Eq. (9) is solved iteratively for ma ¼ j2p=lzj as

ma ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kHN

2Hn

� �2=5

m2=5
a � k2

H �
1

4H2

s
, (10)

where the first guess for ma on the right-hand-side (RHS) of
Eq. (10) is

ma ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kHN

2Hn

r
� k2

H �
1

4H2

s
, (11)

and the second guess for ma on the RHS of Eq. (10) is the value of
ma determined on the left-hand side of Eq. (10) from the first
iteration. This procedure is iterated until convergence in ma is
obtained.

Fig. 1 shows the vertical wavelength as a function of altitude
for a high-frequency GW with lH ¼ 217 km and tr ¼ 20:2 min,

propagating through zero background winds U ¼ V ¼ 0. This
figure was obtained by calculating the left- and right-hand sides
of the dispersion relation, Eq. (1), for 200,000 equally spaced
values of lz ¼ ½�1000;1000�km every 2 km vertically from z ¼

150 to 350 km. If the left- and right-hand sides were within 0.1%
for a GW with vertical wavelength lz at altitude z, it is plotted in
Fig. 1 as a dot. In the lower thermosphere where dissipation is
negligible, upward (downward)-propagating GWs have negative
(positive) m, as discussed previously. The left-hand side of this
figure (with negative m) indicates the vertical wavelength that
this upward-propagating GW has from z�150 to 260 km. At
z�260 km, this upward-propagating GW reflects downwards
because cgzo0, although m remains negative after reflection. This
is because the GW is virtually completely dissipated when it
reflects, having strongly dissipated at a much lower altitude;
therefore, its vertical group velocity cannot be approximated by
Eq. (7). In fact, when the neutral winds are zero, this GW’s
momentum flux is maximum at the ‘‘dissipation altitude’’ of
zdiss�165 km as determined via ray tracing (see Fig. 2 of Vadas and
Nicolls, 2008). Although Fig. 1 is useful for understanding how this
GW’s vertical wavelength varies with altitude as it propagates and
dissipates, it does not show at what altitude this GW dissipates,
nor how its amplitude varies with altitude, because the dispersion
relation contains no amplitude information. Instead, we must ray
trace this GW in order to determine its amplitude via Eq. (3).

If this GW is upward propagating and dissipates at
zdiss�160 km, then it is reasonable to ask what the GW lz

solutions signify for z4260 km. Suppose an upward- or down-
ward-propagating GW with these values of lH and tr was created
by some physical process at z4260 km in the thermosphere. Then
Fig. 1 shows this GW’s vertical wavelength as a function of altitude
as it propagates and dissipates. However, because zdiss�160 km,
this GW (whether upward or downward propagating) would
dissipate very rapidly after being created since z is more than a
few density scale heights above zdiss (Vadas, 2007).

Until a GW begins to dissipate, its horizontal flux of vertical
momentum times the mass density, rðu0Hw0Þ, is approximately
constant as it propagates through an atmosphere with vertically
varying winds, where the overline denotes a temporal average
over a wave period, u0H is the GW’s horizontal velocity in the
direction of propagation, and u0Hw0 is the horizontal transport of
vertical momentum flux. Although the momentum flux remains
constant, a GW’s horizontal and vertical perturbation velocities
vary as the background winds vary with altitude. For example, if
an upward- and eastward-propagating, non-dissipating GW
encounters a westward wind, lH is constant while lz increases.
Using the Boussinesq continuity equation, r � v0 ¼ 0, which can be
rewritten in Fourier space as mew0 ¼ �kHfuH

0
, whereedenotes the

Fourier transform, a GW’s vertical velocity times
ffiffiffiffi
r

p
increases

when propagating in a direction opposite to the background
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and tr ¼ 20:2 min in zero neutral, background winds, U ¼ V ¼ 0.
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wind, since

rw02�� ðlz=lHÞðru0Hw0Þ. (12)

On the other hand, if this GW encounters an eastward wind
(in the same direction as the GW’s propagation direction), then its
vertical velocity decreases because lz decreases.

Because the velocity of a GW is needed to calculate the plasma
response, we utilize the GW polarization relations. Using Eqs. (B5),
(B4) and (23) from VF2005, the anelastic, dissipative, polarization
relation relating the horizontal and vertical GW perturbation
velocities is

ew0fuH0

¼ �
kHm

m2 þ 1=4H2
1�

iðk2
þ 1=4H2

ÞðoI � ianÞ
2mHk2

HN2

"

�
2

g
� 1

� �
oI �

ian
Pr

� ��
. (13)

Here, a � �k2
þ 1=4H2

þ im=H, oI ¼ oIr þ ioIi is the complex
intrinsic frequency, fuH0 is the GW’s ‘‘scaled’’ horizontal perturba-
tion velocity, and ew0 is the GW’s ‘‘scaled’’ vertical perturbation
velocity. ‘‘Scaled’’ denotes that the GW velocities are multiplied by
expð�z=HÞ prior to taking their Fourier transform (see VF2005).
Note that Eq. (13) reduces to the correct equation in the non-
dissipative, Boussinesq limit: setting H!1 and n ¼ 0, Eq. (13)
becomes ew0 ’ �ðkH=mÞfuH0, which is simply the 2D Boussinesq
continuity equation. Note that Eq. (13) is complex, indicating a
possible phase difference between the GW horizontal and vertical
velocity perturbations other than 01 or 1801 when a GW is
strongly dissipating. We then calculate the squared horizontal and
vertical velocity spectral amplitudes via

fuH0fuH
	

0 ¼
ew0fuH0

� ��1fuH0 ew	0, (14)

ew0 ew	0 ¼ ew0fuH0

� �fuH0 ew	0. (15)

Here, the 	 denotes the complex conjugate.

3. GW measurements with PFISR

3.1. Experiment

As described in more detail in Nicolls and Heinselman
(2007), the Poker Flat Advanced Modular Incoherent Scatter
Radar (PFISR) system is located at the Poker Flat Research Range
ð65:13
N;147:47
WÞ near Fairbanks, Alaska. PFISR is capable of
pulse-to-pulse beam steering, thereby pointing essentially simul-
taneously at multiple positions in the sky. The beam configuration
for a recent experiment that exhibits good spatial coverage is
shown in the lower right corner of Fig. 2, which shows the
geographic beam positions (distance from the radar) at 200 km
altitude. This configuration includes 10 beams spread in azimuth-
elevation as well as a beam pointed nearly parallel to the local
magnetic field line. Beam #8 is vertically pointed, and beam #10
looks up the local magnetic field line. For the observations
presented in this paper, a 480ms (72 km) long pulse was
transmitted on two frequencies, and sampled every 30ms
(4.5 km).

3.2. Density measurements

The radar samples complex voltages as a function of range
associated with incoherent backscatter (IS). These returns can be
used to form complex autocorrelation functions (ACFs), related to
the power spectrum by a Fourier transform. ACFs can be fit for
common IS parameters such as electron density ðNeÞ, electron

temperature ðTeÞ, ion temperature ðTiÞ, and the line-of-sight (LOS)
ion speed ðVlosÞ (e.g., Evans, 1969), although typically to obtain
absolute electron density requires a calibration (a task for PFISR
which is performed using supplementary plasma line measure-
ments). Backscattered power is related to electron density by a
simple relation (valid for Te=Ti�p4) (e.g., Evans, 1969),

Pr ¼
Pttp

R2
Ksys

Ne

ð1þ k2l2
DÞð1þ k2l2

D þ Te=TiÞ
, (16)

where Pt is the peak transmit power (�1:3 MW for the experi-
ment described in this paper), tp is the pulse length, R is
range, Ksys is a system constant that encompasses gain and other
effects, k ¼ 4p=l�18:8 m�1 is the radar Bragg wavenumber, and
lD�69

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Te=Ne

p
is the electron Debye length. For the PFISR probing

frequency of �450 MHz, the Debye length term can be neglected
for densities above a few times 1010 m�3, and we are left with a
correction term due to the electron-to-ion temperature ratio.

For an uncoded pulse of length tp, the power measurement is
range smeared over the length of the pulse, so that the measured
power ðPM

r Þ at range R is related to the true power ðPrÞ by

PM
r ðRÞ ¼

Z Rþctp=4

R�ctp=4
PrðR

0
ÞdR0, (17)

where c is the speed of light.
If we assume that Te=Ti is roughly constant over the length of

the pulse, a reasonable assumption in the F region, then we can
write a similar expression for the measured electron density,

NM
e ðRÞ ¼ R2

Z Rþctp=4

R�ctp=4

NeðR
0
Þ

R02
dR0. (18)

Measured electron densities in the presence of GWs may be
expressed as a superposition of a background ðNeÞ and a
perturbation ðdNeÞ quantity, i.e.,

NeðRÞ ¼ NeðRÞ þ dNeðRÞ, (19)

so that Eq. (18) becomes

NM
e ðRÞ ¼ R2

Z Rþctp=4

R�ctp=4

NeðR
0
Þ þ dNeðR

0
Þ

R02
dR0. (20)

The measured fractional perturbation in electron density, then,
is computed as

dNM
e ðRÞ

N
M

e ðRÞ
¼

NM
e ðRÞ

N
M

e ðRÞ
� 1, (21)

which includes the range-smearing effects of the long pulse.
For the results presented in this paper, Te=Ti variations

associated with the passage of a GW are neglected. This assumes
that electron density variations are proportional to variations in
backscattered power. While ðTe=TiÞ-induced variations change the
magnitude of dNe=Ne, only variations of the relative phases of dTe

and dTi with altitude affect the results derived in this paper. The
inferred electron density variations are related to the true electron
density variations by the expression

dPr

Pr
¼
dNe

Ne
�
dTe

Te

Te=Ti

1þ Te=Ti
fTe
þ
dTi

Ti

1

1þ Te=Ti
fTi

, (22)

where fTe
and fTi

represent the phase difference between the
temperature perturbations and the electron density perturba-
tions. By neglecting the temperature phase variations, we are
making the assumption that the amplitude of the temperature
perturbations (modified by the given factors) is small compared
with the density perturbations and/or that the phase variations of
those perturbations do not change with altitude. Although some
studies have shown that the phase of the temperature perturba-
tions is different and change with altitude (e.g., Hocke et al., 1996),
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at lower altitudes ð�o250 kmÞ both electron and ion temperature
perturbations are expected to be strongly coupled to neutral
temperature perturbations; therefore, assuming that dTe � dTi �

dTn is a reasonable approximation (Hocke et al., 1996; Testud and
Francois, 1971). In addition, the perturbation amplitudes of the Te

and Ti fluctuations are expected to be considerably smaller than
those of the Ne perturbations (e.g., Kirchengast, 1996), and are
further reduced by the fact that Te=Ti41 during the daytime.
Nevertheless, this is a potential source of error in the analysis and
could affect the derived results, in particular the magnitude of the
electron density perturbations. While we did derive temperatures
for this experiment, they are not sufficiently precise to determine
the dTi and dTe phase relationships accurately as a function of
altitude needed to extract the horizontal winds (see Section 4).
We do note, however, that we have found that including them
does not significantly change the shape and amplitudes of the
extracted winds, although the errors are much larger.

More importantly, the range smearing induced by the long
pulse and implied by Eq. (20) can have a significant impact on the
inferred phase variations of dNe. Thus, some mitigation of this
effect is necessary; more recent experiments have employed
experimental techniques that minimize this effect. The approach
taken here is to first compute dNM

e and N
M

e , i.e., the range-smeared
density perturbation and background density, respectively, by

filtering the measured densities; this procedure is described in
more detail below. These quantities are then deconvolved to
determine an estimate of the true background and perturbation
densities. The deconvolution is regularized using a smoothness
constraint that penalizes large gradients in the solution. An
illustrative example of this process is shown in Fig. 3. Fig. 3a
shows a typical Ne measurement (black), which has errorbars
(statistical fluctuations) of 5–7% in the altitude range of interest.
The gray line here shows the resultant background density ðN

M

e Þ

determined from the filtering process. The black solid line in
Fig. 3b also shows the measured dNM

e . All three of these quantities
suffer from range smearing. Deconvolution gives the solid blue
line in the middle panel; the solid gray line results after applying
the forward model, which matches very well with the observed
dNM

e (although it is much smoother, as a result of the applied
regularization). Note that the main result of this process is an
increase in amplitude of the density perturbation, and a small
shift in peak altitude, both of which are expected given the
characteristics of the range smearing. The right panel shows the
resultant dNe=Ne, which are then used in our analysis to compute
the GW vertical wavelengths, as described next.

The dNe=Ne inferred using this procedure on 13 December
2006 is plotted in Fig. 2, for all beam directions. The densities here
have been integrated for approximately 1 min. Prior to applying
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Fig. 2. Electron density fractional perturbations for all 10 beams as a function of time and altitude on 13 December 2006. The lower right panel shows beam positions at an

altitude of �200 km.
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the deconvolution procedure, the data were zero-phase filtered
with a sixth-order Butterworth bandpass filter, which was
designed to remove signals outside of the 10–40 min passband
while losing no more than 3 dB in the passband, and having an
attenuation of at least 15 dB in the stopband. In this way,
estimates of both dNe and Ne were produced. Two distinct GWs
are discernible in the figure during the time period from 20:00 to
24:00 UT (local standard time is LST ¼ UT� 9), although they
have similar periods. The first GW can be seen from 20:00 to
22:00, while the second GW can be seen from 22:00 to 24:00 UT.
Note that the latter GW was investigated by Nicolls and Heinsel-
man (2007), and changes with altitude of its vertical wavelength
were used to compute the vertical variations of the average
neutral background wind in Vadas and Nicolls (2008), although
the range-smearing corrections described in this section were
not applied to those calculations. The thin white lines in Fig. 2
trace lines of constant wave phase, where the absolute value of
the electron density perturbation is maximum. We will show
later how diagnosing these lines of constant wave phase yields
important information on the temporal variability of the back-
ground winds through which the GWs propagate.

Several important features are apparent in Fig. 2. First, the
positive and negative oscillations of the electron density pertur-
bations are fairly periodic in all of the beams. Second, the wave
phases for all of the GWs move downward in time, indicating
upward-propagating GWs from Eq. (7), since mo0 for upward-
propagating GWs when dissipation can be neglected. Third, the
electron density perturbations are maximum at z�1802200 km,
where Ne changes rapidly (see Fig. 1 from Vadas and Nicolls,
2008). This seems to suggest that the GWs dissipate at z�190 km.
However, the altitude where dNe=Ne peaks is not equal to the
altitude where the GW’s momentum flux is maximum; rather,
the electron density responds most strongly to rapid changes with
altitude in the background electron density and/or the GW

amplitude (see Section 5). Fourth, these waves are relatively high
frequency; the first GW’s period is �20 min, while the second
GW’s period is �24 min. In order to see that these GWs are two
different waves, we highlight the time difference between the
electron density perturbations where there is a ‘‘gap’’ in GW
activity. In beam #8, for example, the time difference between
the dark blue contours at 21:29 and 22:27 UT at z�180 km is
58 min.

The positive and negative electron density perturbations at a
given altitude occur at different times in the different beams. This
is because the GWs are propagating horizontally and vertically
through the beams at differing times, since these beams are
spread out horizontally in the thermosphere (see lower right
panel of Fig. 2). For example, note that beams #4 and 7 are
northwest (NW) of the vertical beam (#8), while beam #9 is SE of
the vertical beam. Thus if a GW is propagating SEward, it will
reach beam #4 first, then #7, then #8, and finally #9. Using the
horizontal spacing between the beams and the GW period, the
horizontal phase speeds, wavelength, and propagation directions
of the GWs can be computed from Fig. 2. GW#2 was found to be
propagating SEward (Nicolls and Heinselman, 2007; Vadas and
Nicolls, 2008). This direction of propagation is confirmed via a
different PFISR measurement. Fig. 4 shows very precise plasma
line measurements of the peak electron density using a plasma
line cutoff technique (e.g., Showen, 1979) from 5 of the 10 beams
where the plasma line was detected. The plasma line densities in
Fig. 4a show clear density perturbations of roughly the same
magnitude as observed in the power measurements of Fig. 2. The
power spectra in Fig. 4b show that �20225 min waves are clearly
present. The density perturbations are shown in Fig. 4c as a
function of time and horizontal distance for 3 beams each in the
approximately zonal (left) and meridional (right) directions. From
Fig. 4c, it is clear that the wave is propagating eastward and
southward.
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Fig. 3. (a) Measured Ne (black) and extracted N
M

e (gray). (b) Extracted dNM
e (black solid) and forward model (gray solid), with resultant dNe (blue solid). Same for N

M

e

(dashed), which have been scaled by a factor of 10. (c) Resultant dNe=Ne , without range correction (black) and after deconvolution (gray).
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In Table 1, we show the extracted GW parameters. The columns
from left to right show the number of the wave, the time (in UT),
lx, ly, lH (in km), tr ¼ 2p=or (in min), and the propagation angle
clockwise from north, c ¼ 90� tan�1ðlx=lyÞ (in deg). Horizontal

wavelengths were determined by examining the ‘‘propagation’’ of
density perturbation peaks through chosen beams. This procedure
is illustrated in Fig. 5. Here, we show perturbations observed
along 6 ‘‘rows’’ of beams that are horizontally aligned at an
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Fig. 4. Summary of plasma line observations from five beams where the line was detectable. (a) Electron densities inferred from the plasma lines for all five beams (solid),

along with the estimates of Ne (dashed lines). The lower right-hand corner shows the geometry plot of these beams. (b) Power spectra for each of the beams in (a), as

labeled. (c) dNe=Ne for the three beams aligned in the approximately zonal direction (blue line in the geometry plot in (a)) and the meridional direction (black line in the

geometry plot in (a)).

S.L. Vadas, M.J. Nicolls / Journal of Atmospheric and Solar-Terrestrial Physics 71 (2009) 744–770750



Author's personal copy

altitude of �200 km. Rows consisting of beams (1,4,7), (2,5,8,10),
and (3,6,9) form a line at an angle that is approximately 20
 east of
north. Beams (1,2,3), (4,5,6), and (7,8,9), on the other hand, form a
line at an angle that is approximately �70
 west of north. Because
these lines are nearly perpendicular, they provide accurate
estimates of the direction of propagation and horizontal wave-
lengths of the GWs. It is clear from Fig. 5 that both waves are
propagating southward and eastward. Using the inferred pertur-
bation speeds from Fig. 5, we derive a single horizontal phase
speed along each direction, and an associated error estimate, and
utilize these results to derive an estimate of the horizontal
wavelengths in geographic coordinates. The first GW was
propagating SEward, �38
 counterclockwise from south, with a

horizontal phase speed of cH ¼ or=kH ¼ 179 m=s. The second GW
was propagating SEward, �27
 counterclockwise from south, with
a horizontal phase speed of cH ¼ or=kH ¼ 141 m=s. These speeds
are smaller than �250 m=s, and suggest that these GWs originated
in the lower atmosphere. Note that Table 1 does not contain lz

values for these GWs, because lz varies with altitude due to the
spatially and temporally varying background, neutral, horizontal
winds. Vertical wavelengths of these GWs will be calculated in
Section 4, and will be utilized as tools to determine the spatial and
temporal variability of the background, neutral winds.

Fig. 6 shows bandpass filtered LOS ion velocities, dVlos from all
10 beams. These measurements indicate that dVlos are small,
10–20 m/s, as were the un-filtered velocities, indicative of small
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Table 1
Gravity wave parameters.

Wave Time (UT) lx (km) ly (km) lH (km) tr (min) c (deg)

#1 20:00–22:00 349� 15 �277� 10 217� 6 20:2� 0:2 142� 3


#2 22:00–24:00 451� 53 �226� 13 202� 11 23:9� 0:1 153� 3


Fig. 5. Density perturbations as a function of time and horizontal distance for three or four beams, as labeled, referenced to the first beam. Solid lines denote the paths of

phase propagation. In the top row, beams are aligned northern-most to southern-most (from top to bottom), whereas in the bottom row they are aligned from western-

most to eastern-most (top to bottom).
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electric fields and low geomagnetic activity. The plasma oscilla-
tions are induced by the GWs via neutral-ion collisions. Because
the ions are confined to move along the magnetic field line, the
Vlos perturbations looking up the magnetic field line (beam #10)
approximately equals the GW vertical velocity, w0, since the
magnetic field is nearly vertical at Poker Flat (PF), with a dip angle
I ¼ 77:5
. We therefore estimate a GW vertical velocity of
w0�15220 m=s for these GWs at z�220 km.

There are several other features to note about Fig. 6. First, the
positive and negative oscillations of Vlos are fairly periodic in all of
the beams. Second, we can clearly see both GWs, separated by the
same ‘‘gap’’ in significant GW activity as in Fig. 2. Third, the
constant phase lines of Vlos and dNe=Ne are offset in time. For
many of the phase lines, Vlos lags dNe=Ne in phase by approxi-
mately 90
. When Vlos and dNe=Ne are in quadrature, advection is
the most important contributor to the ion continuity equation
(see Section 5). However, other investigators have found larger
GW phase differences of 1802210
 at z�2002250 km from the
EISCAT data (Kirchengast et al., 1996), and variable phase
differences of 902180
 were found for GWs detected by the

Dynamics Explorer-2 satellite data (Earle et al., 2008). Phase
differences other than 90
 can occur when other processes such as
chemical, ion drag, neutral-ion heating, and ion friction are
important (Kirchengast et al., 1996). Fourth, rather than peaking at
z�190 km like the electron densities, Vlos peaks at much higher
altitudes, at z�2002260 km (see Section 5). This behavior has
been researched previously (e.g., Kirchengast et al., 1996).

3.3. GW lines of constant phase for determining lz

In this subsection, we show how a GW line of constant phase is
related to the vertical wavelength. A GW’s amplitude is oscillatory,
and is proportional to

exp½iðkxþ lyþmz�ortÞ� ¼ exp½iðk � x�ortÞ� ¼ expðifÞ, (23)

where f ¼ kxþ lyþmz�ort is the phase of the wave and x ¼
ðx; y; zÞ is a cartesian vector. Thus, the absolute value of the GW’s
amplitude is largest when f ¼ 0;2p;4p; . . . (positive) and f ¼
p;3p;5p; . . . (negative). The electrons and ions respond to this GW
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Fig. 6. Low and high bandpass filtered line-of-sight ion velocities, Vlos , for all 10 beams.
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by oscillating in time and in space (Klostermeyer, 1972; Kirch-
engast et al., 1996). We assume that the electron density
perturbations created by this GW follow the same functional
behavior as Eq. (23), with the addition of an arbitrary phase shift.
We will show in Section 5 that this assumption is approximately
true for a single-ion species where chemical and drag effects can
be neglected. Because Oþ is the dominant species above
z�200 km, this analysis is likely more accurate above z�200 km
than below z�200 km.

For a radar beam pointing at azimuth z (clockwise from north)
and elevation y (from horizontal), the cartesian vector in a radar-
center geographic coordinate system (neglecting earth-curvature
effects) is

x ¼ RA, (24)

where

A ¼ cos y sin zîþ cos y cos zĵþ sin yk̂ (25)

is the unit vector in the beam look direction, R is the range, and î, ĵ,
and k̂ are the unit vectors in the zonal, meridional and vertical
directions, respectively. Then, the variation in f along a constant
wave phase line is

df ¼ k dxþ l dyþm dz�or dt ¼ ðA � kÞdR�or dt ¼ 0. (26)

This implies a slope of the constant phase line of

dR

dt

����
f
¼

or

A � k
, (27)

where ‘‘jf’’ indicates that the derivative is taken with f constant.
Note that we can write Eq. (27) in terms of altitude, z ¼ RAz, by
multiplying both sides by Az,

dz

dt

����
f
¼

or

Ax

Az
kþ

Ay

Az
lþm

¼
or

m

1

AH � kH=ðAzmÞ þ 1

� �
, (28)

where AH and kH are the horizontal components of A and k,
respectively. If the term AH � kH is close to �Azm, then the
denominator of the correction term in Eq. (28) tends to zero,
yielding a very large vertical wavelength. In this case, however,
the large lz is not due to a change in the background winds (as it is
for a vertically pointed beam—see below), but rather because the
radar beam is pointing perpendicular to the k-vector of the GW,
i.e., A � k ’ 0. For the upward-propagating GWs we analyze here,
the k-vectors point downwards, along the constant phase lines.
For a non-vertically pointing radar beam A, the beam may be
perpendicular to k at specific altitudes and times. At these fairly
rare times, the calculated values of lz are very large. This would
seem to present a problem when extracting the background winds
from profiles of the vertical wavelength. However, it turns out not
to pose a significant problem, because the extracted background
winds only depend on m ¼ 2p=lz; when lz gets very large and
m2

5k2
H þ 1=4H2, the value of m has little effect on the extracted

horizontal, neutral wind. Thus, we need no special analysis when
A � k ’ 0.

If we solve Eq. (28) for the vertical wavelength, we obtain

lz ¼
2pAz

or
dR

dt

����
f

 !�1

� AH � kH

. (29)

Thus, by measuring the slope of a line of constant wave phase,
we can determine lz for an assumed fixed horizontal wavelength.

For fixed x and y (i.e., a vertically pointing beam), y ¼ 90
, and
Eq. (28) becomes

dz

dt

����
f
¼
or

m
. (30)

For this special example, the vertical wavelength is easily
calculated:

lz ¼ tr
dz

dt

����
f

 !
. (31)

Since the ground-based period tr is assumed constant, any
changes in time or altitude in the slopes of the constant wave
phase lines for the vertical beam, ðdz=dtÞjf, are due to the variation
of the GW’s vertical wavelength with altitude and/or time.

4. Temporal evolution of the thermospheric, neutral winds

Vadas and Nicolls (2008) analyzed the GW that was observed
by PFISR from 22:00 to 24:00 UT on 13 December 2006; this is the
same as GW #2 we analyze here. They calculated a mean lz profile
with altitude by averaging over most of the time that this GW was
observed. They used this mean profile to extract an average,
background, neutral, horizontal wind along the direction of GW
propagation using the GW dissipative dispersion relation. (Note,
Vadas and Nicolls, 2008, did not account for range-smearing and
other effects, as we have done here.) Along with the mean
component of the anti-parallel ion velocity, Vap (which was used
to estimate the neutral wind along the magnetic meridian, Um),
they determined that the neutral wind was quite strong from z ¼

180 to 200 km, and was directed opposite to the GW’s propagation
direction, towards the NW. However, calculating an averaged-in-
time lz profile resulted in a loss of information about the temporal
evolution of the background winds. Because we wish to under-
stand how the winds evolve in time, we determine the time-
evolution of both GW’s lz profiles using the slopes of their
constant wave phase lines and Eq. (29). Then, knowing that lz

evolves in time because of Doppler shifting as a GW propagates
through temporally and spatially varying background winds, we
can extract the background, neutral winds every one-half wave
period, or every tr=2�10212 min, in each of the beams.

4.1. Determination of the GW vertical wavelengths

There are five significant positive and negative constant wave
phases for beam #8 where jdNe=Nej is maximum. The times and
altitudes where this occurs are shown in Fig. 7 as dashed lines;
these are equivalent to 10 of the thin white lines in Fig. 2. We also
apply a three-point running average to these lines, and plot them
as solid lines in Fig. 7. These solid lines are used to determine the
derivative of altitude with respect to time along constant wave
phase lines, ðdz=dtÞjf. Note that ðdz=dtÞjf is nearly vertical for
some of the phase lines at z�1802200 km.

Using Eq. (29), we show offsetted profiles of lz as a function of
altitude for all 10 wave constant phase lines in Fig. 8a. Here, a
three-point running average has been applied to the calculated
jlzj profiles. The hatched region with dashed lines separates GWs
#1 and 2. Because lz switches sign occasionally where zðtÞjf is
approximately vertical, and because the non-dissipative disper-
sion relation only depends on m2, we plot the absolute values of lz

(with the same three-point running average) in Fig. 8b for GWs #1
and 2. First, we note that lz can be large at z�1802200 km, i.e.,
lz ! 2002300 km. These large values of lz occur where the GW
becomes nearly evanescent or evanescent; at this altitude, a
portion of the GW likely reflects downwards. However, because
dVlos peaks at somewhat higher altitudes for these phase lines
(see Fig. 6), if the GW is evanescent, then it must be tunneling
through the barrier to z�200 km where it is no longer evanescent.
Tunneling may be possible for this GW because the vertical scale
over which evanescence occurs, Dz�20 km, is much smaller than
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Fig. 8. (a) Values of lzðzÞ computed from Eq. (29) using the solid lines in Fig. 7 for both GWs in beam #8. The lzðzÞ profiles are offsetted by 1500 km. The results along the

first, second, third, forth and fifth constant wave phase lines are shown as �’s, diamonds, triangles, þ’s, and squares, respectively. The following five phase lines repeat these

symbols. The dot lines show lz ¼ 0 for each constant phase line. The hatched regions with dashed lines separate GWs #1 and 2. (b) Same as in (a), but showing jlzðzÞj

instead. The profiles are offsetted by 1000 km. (a) Computed values of the intrinsic period via solving Eq. (1) iteratively. Profiles are offsetted by 10 min, and use the same

symbols as in (a). The buoyancy period, 2p=N, is shown as dotted lines.

Fig. 7. Times where the GW phases are maximum as a function of altitude for beam #8 (dash lines). Three-point running average of the same times (solid lines).
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the GW’s vertical wavelength. Second, lz varies in time and in
altitude. When this occurs and the GW is not yet dissipating, the
neutral background winds must be changing in time and in
altitude. Third, when a GW is dissipating, lz will vary irrespective
of the winds (VF2005).

4.2. Extracting the neutral winds from the vertical wavelength

profiles

We now calculate the intrinsic frequency profiles from Eq. (1).

This requires the background neutral temperature profile, TðzÞ.

Because we do not know this temperature profile, we utilize TðzÞ

from the empirical NRLMSISE-00 model (Hedin, 1991). Note that it

was estimated that a 20% uncertainty of T results in a 15%
uncertainty of the extracted neutral wind (Vadas and Nicolls,
2008). Geomagnetic activity on and around 13 December 2006
was quite low, with a daily sum Kp index of 13.3 (daily average Ap
index of 8) for the day of observation and no significant
geomagnetic storms in the several days prior to the observation

period. The TðzÞ profile was shown in Fig. 2c in Vadas and Nicolls
(2008), and has a maximum thermospheric temperature of

T�810 K. We also set Pr ¼ 0:7 and m ¼ 3:34� 10�4T
0:71

gm=m=s.

Using the lzðzÞ data from Fig. 8a with a three-point running
average, we solve Eq. (1) iteratively for oIrðzÞ starting at the lowest
altitude where n is negligible, and use the oIr solutions as initial

guesses as z is increased. Here, lH and or are taken to be constant,
which assumes that horizontal and temporal variations of the
background winds and temperature are ‘‘small’’ along ray paths.
Fig. 8c shows the intrinsic wave period, tIr ¼ 2p=oIr , as a function
of altitude for all 10 phase lines. Note that tIr varies with altitude
and time.

We also plot the buoyancy period from the MSIS model,
tB ¼ 2p=NðzÞ, as dot lines. We see that tIr is nearly equal to tB at
z�1802200 km for the phase lines where lz is very large. This is
because if tIr ¼ tB, then m ¼ 0 and lz !1. Since lz switches sign
for many of the phase lines at z�1802200 km in Fig. 8a, it is likely
that these GWs were evanescent over that altitude range for at
least some of the time. In this case, tIr should equal tB at those
altitudes; however, tIr is shown to be �1 min larger than tB in Fig.
8c. Therefore, the actual thermospheric temperature over PFISR
may have been somewhat larger than that given by MSIS.

From Eq. (2), the background, neutral wind along the direction
of propagation of the GW can be extracted from the intrinsic and
observed wave periods via

UHðzÞ ¼ lH
1

tr
�

1

tIr

� �
. (32)

Fig. 9a shows the resulting extracted, horizontal winds in beam
#8 for GWs #1 and 2. A negative value indicates that the wind is
opposite to the propagation direction of the GW. Since both GWs
propagate to the SE, and because the extracted winds in Fig. 9a are
negative, the projection of the background, neutral wind along the
NW–SE direction is always NW for beam #8. Additionally, Vadas
and Nicolls (2008) estimated that the total, horizontal neutral
wind (not just the projection in the NW–SE direction) was in the
NW direction, using the mean component of the anti-parallel ion
velocity. Note that when the extracted wind amplitudes are close
to �300 m=s, the actual background winds may be larger, because
there is an upper limit to the extracted wind amplitude with this
method. This limit is based on the GW’s horizontal wavelength
and period (see Eqs. (33) and (34)).

Fig. 9a shows that the extracted winds contain an oscillation
with a 35–40 km vertical scale. We apply a nine-point running
average to Fig. 9a to remove this oscillation from the winds. Fig. 9b
shows these smoothed winds. These winds are to the NW, and

change slowly with time and altitude. For most of the phase lines,
the wind amplitude decreases steadily with altitude, with UH��

ð1502250Þm=s at lower altitudes and UH�� ð752150Þm=s at
higher altitudes.

For each constant phase line, we calculate the average of the
smoothed winds in Fig. 9b from z ¼ 180 to 250 km. These mean
winds will be shown in the next figure, and have amplitudes of
UH�� ð1402170Þm=s. We then subtract these mean winds from
the smoothed winds, and show the residual winds in Fig. 9c. We
see a deep, slowly moving wave with an amplitude of
UH�ð50275Þm=s in most of the phase lines. This wave is
upward-moving, because its phase descends slowly in time, as
can be seen from phase lines 2–5. For the third and fourth phase
lines, it is easy to see that the altitude where the wave is
maximum negative and positive is z�190 and 2302240 km,
respectively, implying an approximate vertical wavelength of
lz�802100 km for this slowly moving wave. Note that this slowly
moving wave increases the NW mean wind at z�190 and
decreases the NW wind at z�2302240 km, thereby changing the
total wind field that GWs #1 and 2 propagate through.

In Fig. 9d, we show the extracted winds from Fig. 9a minus the
smoothed background winds from Fig. 9b in order to examine
the oscillations in more detail. The oscillations appear to be
approximately stationary with time, with amplitudes of
UH�50275 m=s. If these oscillations occurred because of the
presence of an additional GW, then its period would have to be
10–12 min, which is the approximate time between the phase
lines, and its vertical wavelength would have to be lz�35240 km.
We note that GWs with lzo70 km are not believed to be able to
reach altitudes of z�2202240 km because of dissipative filtering
(Vadas, 2007; Fritts and Vadas, 2008). Therefore, we are skeptical
that this oscillation represents a true GW; it may be an artifact of
the data processing, in particular the deconvolution of the range-
smearing effects of the long pulse, as described in Section 3.

In Fig. 10, we show the mean UH as a function of the mean
time, which is the average from z ¼ 180 to 250 km of the
smoothed wind in Fig. 9b. We note that the strength of the mean
wind increases from UH�� 140 to �170 m=s from 21:00 to
23:00 UT. However, there is variability in these mean winds of
order �10 m=s. Because the mean horizontal wind is slowly
varying with time over this 2-h window, it is likely due to a wave
with a period larger than �8 h. The dominant tidal modes in the
thermosphere are migrating diurnal and semi-diurnal tides, with
the latter dominating in the lower thermosphere and the former
dominating at altitudes above �200 km (Forbes, 1995). Note that
global circulation models predict the amplitudes of these
migrating semi-diurnal and diurnal tides to be slowly varying
with altitude for z4180 km because of molecular viscosity (e.g.,
Roble, 1995). Additionally, tidal amplitudes of �150 m=s are not
uncommon in the thermosphere. Therefore, the mean wind
shown here is likely due to a migrating diurnal tide.

When the background winds are opposite to a GW’s propaga-
tion direction, the GW’s dissipation altitude in the thermosphere
increases, because the GW’s intrinsic frequency and vertical
wavelength are much larger than when the background winds
are in the direction of GW propagation or are zero (Fritts and
Vadas, 2008). However, if the background winds are too strong
and are opposite to a GW’s propagation direction, then the GW’s
intrinsic frequency will equal the buoyancy frequency. At that
altitude, an upward-propagating GW becomes evanescent. If the
vertical extent of the wind barrier is relatively small, then the GW
can tunnel through it to higher altitudes. Otherwise, the GW
reflects downwards (Cowling et al., 1971; Waldock and Jones,
1984). From Fig. 8, GWs #1 and 2 were likely evanescent or nearly
evanescent at z�1802200 km at the times corresponding to
constant phase lines #5, 9, and 10, because lz was very large and
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tIr�tB. However, the amplitudes of Vlos are non-zero up to
z�2202240 km. Because Vlos reflects the GW’s velocity amplitude
more accurately than dNe=Ne (see Section 5), if GWs #1 and 2
were truly evanescent, then they apparently tunneled through the
wind barrier to higher altitudes; if they had not tunneled, then
they would have reflected downwards, and Vlos would have been
negligible for z4200 km in Fig. 6.

When a GW’s intrinsic period equals the buoyancy period, but
the wind barrier’s vertical extent is small enough to allow for GW
tunneling to higher altitudes, the wind that is extracted from the
dispersion relation does not equal the actual wind, but instead is
smaller than the actual wind. Using Eq. (32), the strongest
background wind that can be extracted from the dispersion

relation when tIr ¼ tB is

maxðUHÞ ’ lH
1

tr
�

1

tB

� �
. (33)

Essentially, once a GW’s phase lines are vertical because the GW
encounters an oppositely directed wind barrier of amplitude
maxðUHÞ, no further steepening of the phase lines can occur if the
winds increase even further. Therefore, Eq. (33) represents the
largest wind that can be extracted by this method for a given GW.
Using Table 1, the largest wind that can be extracted by this
method for GWs #1 and 2 is

maxðUHÞ ’ ð3202360Þm=s (34)

ARTICLE IN PRESS

Fig. 9. (a) Extracted background, horizontal, neutral winds, UH , for beam #8. Profiles are offsetted by 300 m/s. (b) The extracted winds from beam #8, smoothed using a

nine-point running average to remove the small-scale oscillations. (c) The smoothed winds in (b) minus the average from z ¼ 180 to 250 km for each phase line. (d) The

extracted winds in (a) minus the smoothed winds in (b). Here, we use the same symbols for the phase lines as in Fig. 8.
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for a buoyancy period of 7 min for the MSIS model at z�190 km.
From Fig. 9a, the largest extracted winds at z�1802200 km are
UH ’ �ð2802300Þm=s. Therefore, it is possible that we are not
extracting the actual wind amplitudes at these altitudes and times
because of GW evanescence and tunneling. For the same ground-
based period, a larger wind can be extracted from the constant
phase lines of a GW with a larger horizontal wavelength, for
example.

In Fig. 11a, we show the calculated background wind accel-
erations, DUHðzÞ=DtðzÞ, using the extracted winds from Fig. 9a and
the times from Fig. 7. Although the accelerations due to the
smaller-scale oscillations are visible, the accelerations due
to the slowly moving winds are also visible, with amplitudes
of @u0=@t�ð0:0520:1Þm=s2. Fig. 11b shows the calculated
values of

jlzðdUH=dzÞ=ð2pUHÞj (35)

ARTICLE IN PRESS

Fig. 10. Mean wind values for beam #8 as a function of the mean time (triangles).

This is the average from z ¼ 180 to 250 km of the smoothed winds in Fig. 9b.

Fig. 11. (a) Neutral, background wind accelerations, DUH=Dt, using the data in Figs. 7 and 9a. The acceleration profiles between the first and second (1–2), second and third

(2–3), etc., wave phases are shown as �’s, diamonds, triangles, þ’s, squares, �’s, diamonds, triangles, and þ’s, respectively. Profiles are offsetted by 0:3 m=s2. (b)

jlz=ð2pUH=ðdUH=dzÞj. Profiles are offsetted by 5. (c) dNe=Ne for GWs #1 and 2 along the constant wave phase lines. Odd-numbered profiles are offsetted by 0.2. The symbols

in (b) and (c) are the same as in Fig. 8.
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using the extracted winds from Fig. 9a. Most of the large
variations occur on vertical scales of 35–40 km, which is the scale
of the oscillations. According to Eq. (8), Eq. (35) must be less than
one in order to ensure that the wind shear terms in the fluid
equations can be neglected in deriving the GW dissipative
dispersion relation. Note the important factor of 2p in the
denominator; this factor arises because it is m, and not 1=lz,
which appears in the equations of motion. Although Fig. 11b

(smoothed over the vertical scale of the oscillations) is often o1, it
is sometimes larger than one, up to 2–3. Thus, although the
calculated winds likely approximate the actual winds at most
altitudes and times in beam #8, it is difficult to say how
closely these calculated winds equal the actual winds when
jlzðdUH=dzÞ=ð2pUHÞj41. Comparison with experimentally deter-
mined wind values may shed light on the accuracy of these
extracted winds when jlzðdUH=dzÞ=ð2pUHÞj41.

ARTICLE IN PRESS

Fig. 12. Times when the GW phases are maximum as a function of altitude for all 10 beams, as labeled (dotted lines). Three-point running average of the same times (solid

lines).
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Fig. 11c shows dNe=Ne along each constant wave phase line in
Fig. 7. The overall, large, negative to positive oscillation of dNe=Ne

every 10–12 min is clearly visible, and is due to GWs #1 and 2.
Note that the relative amplitudes of the smaller-scale oscillations
are smaller here as compared to the horizontal wind amplitudes.
Additionally, the slowly moving wave with the large lz visible in

Fig. 9b and c is not clearly visible here. This is likely because w0 is
very small for this wave, even though u0 is large (see Section 4.3).
We will see in Section 5 that dNe=Ne is approximately propor-
tional to a GW’s vertical velocity amplitude, w0, because the
magnetic field lines at PF are nearly vertical. Therefore, a small
value of w0 implies a small value of dNe=Ne.

ARTICLE IN PRESS

Fig. 13. Extracted background, horizontal, neutral winds, UH , for beams #1–5, as labeled, smoothed via a nine-point running average to eliminate the small-scale

oscillations on vertical scales of 35–40 km. Profiles are offsetted by 300 m/s. We use the same symbols for the phase lines as in Fig. 8.
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Fig. 12 shows the times and altitudes where the wave phases of
GWs #1 and 2 are maximum for all of the beams in the
experiment. The dot lines are identical to the thin white lines in
Fig. 2, although not all of the thin white lines in Fig. 2 are
analyzed. Note that the time when GW #2 is first observed
increases along any meridional direction (e.g., beams 1–3, beams
4–6, and beams 7–9), indicating a SEward propagation direction.

Figs. 13 and 14 show the extracted, smoothed horizontal, neutral
winds for beams #1–5 and #6–10, respectively. Here, we have
applied a nine-point running average to the extracted winds, in
order to eliminate the small-scale oscillations. These phase lines
correspond to the same phase lines as in Fig. 12. Figs. 13 and 14
show that there is a persistent, mean, horizontal wind to the NW
with an amplitude of U�� 150 m=s in all of the beams.

ARTICLE IN PRESS

Fig. 14. Same as in Fig. 13, but for beams #6–10, as labeled.
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Additionally, the slowly moving, upward-propagating wave
identified previously in beam #8 is visible in most of the beams,
with lz�80 km. Note that this wave is often present in adjacent
beams. For example, this large-scale wave is easily seen in beam
#4 at t�22:2222:9 UT and in beam #7 at t�22:0223:0 UT.

Fig. 15a shows the mean wind in all of the beams as a function
of the mean time. These mean winds are obtained by averaging
the smoothed winds in Figs. 13 and 14 from z ¼ 180 to 250 km. We
see that the mean winds in all of the beams are consistent; they
are all NW with slowly changing amplitudes from 100 to 200 m/s.
This consistency lends credibility to our data analysis method and
dynamical inferences. Although there is more variability for
all of the beams than from beam #8 only, this is to be expected
from the increased number of data points. We note that the
approximate error in our extracted winds is �40 m=s. Addition-
ally, the mean wind consistently decreases from UH�� ð802100Þ
to �ð1702180Þm=s over the 3-h interval from 20.8 to 23.8 UT. As
discussed previously, this change in the mean wind with time is
likely due to the migrating diurnal tide. We overlay a wave with
a 24-h period and which peaks a few hours after noon LST in
Fig. 15a in order to suggest how a diurnal tide might vary with
time. This figure suggests that PFISR may be able to measure
portions of the diurnal tidal cycle using this extraction method.

4.3. Properties of the slowly moving wave

The smoothed, extracted winds in Figs. 13 and 14 are composed
of a slowly varying mean component and a slowly moving wave
with a vertical wavelength of lz�80 km. Here, we explore this
wave further.

In beams #4, 7 and 8, the slowly moving wave is easy to see
and occurs over many consecutive phase lines. In Fig. 15b, we
show the altitude where UH is the largest for selected, consecu-
tively occurring phase lines from beams #4, 7 and 8. We see that
the phase of the wave descends approximately linearly in time,
with a slow vertical phase velocity of cz�� ð527Þm=s. Since the
vertical phase velocity is cz ¼ or=m, this slow phase speed is
indicative of a large-scale GW or tide with observed period,

tr ¼ jlzj=cz (36)

of 3–5 h. A medium- or low-frequency GW with a period small
enough to neglect the Coriolis force has a horizontal wave-
length of

jlHj ’
jlzjN

oIr
’

jlzjN

or � jkHjUB
, (37)

where UB is the projection of the background wind along the
propagation direction of the GW. We can rewrite this equation as

jlHj ’ tr
jlzjN

2p
þ UB

� �
. (38)

If we assume this wave was propagating NWward, then
using N�0:015 s�1 at z�200 km and UB ¼ 150 m=s, then
lH�ð600028000Þkm and tIr�9211 h. Using Eq. (10), this wave’s
dissipation altitude would then be zdiss�1702180 km, which is
likely too low to explain this wave’s amplitude profile, since a
wave’s amplitude is negligible several density scale heights above
its dissipation altitude (Vadas, 2007). Instead, if this wave was
propagating SEward, then lH�ð7002900Þkm and tIr�121:5 h.
Using Eq. (10), this wave would dissipate at zdiss�2202225 km,
which is more compatible with the wind amplitudes. Since we do
not know this wave’s propagation direction, we estimate that this
slowly moving wave has a large horizontal wavelength of
lH�70028000 km.

Because this wave’s horizontal velocity amplitude is large, it is
a major component of the background, thermospheric winds
through which the GWs propagate. This 3–5 h wave has a negative
peak at z�190 km and a positive peak at z�230 km, and has a
horizontal wind amplitude of u0�50275 m=s. At z�1802200 km,
it increases the background winds, while at z�230 km, it
decreases the background winds. This leads to a total background
wind in the NW direction of �� ð1502250Þm=s at z�1802

200 km and �� ð752150Þm=s at z�2302250 km. This slowly
moving wave therefore caused the horizontal wind amplitudes
to decrease approximately linearly with altitude, as was noted in
Fig. 9b and c.

Finally, although this wave’s horizontal velocity amplitude was
very large, ju0j�50275 m=s, it vertical velocity amplitude was
small. Using the anelastic continuity equation, this GW’s vertical
velocity perturbation was

w0�
lzu0

lH
(39)

which is as large as w0�1 and 9 m/s if this wave was propagating
NW and SE, respectively.

4.4. Acceleration of the background wind

Now that we have discussed how the background winds are
modulated by the presence of a large-scale, slowly moving wave,
we investigate the neutral, dynamical processes which occur on
much shorter time scales, �30290 min. In Fig. 16, we show the

ARTICLE IN PRESS

Fig. 15. (a) Mean wind values for all of the beams as a function of the mean time (diamonds). Here we average the wind for each phase line in Figs. 13 and 14 from z ¼ 180

to 250 km. (b) Altitudes where the slowly moving wave is the largest as a function of time for three phase lines in beam #4 (þ’s), five phase lines in beam #7 (diamonds)

and two phase lines in beam #8 (triangles).
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smoothed horizontal winds as a function of time at z�190 km.
Note that at these altitudes, dNe=Ne is large; therefore the
determination of lz and the background winds from the constant
wave phase slopes are likely reasonably accurate. At much higher
altitudes, dNe=Ne is smaller, and can decrease rapidly to zero for
some of the phase lines above z4210 km, thereby making the
extracted winds at these higher altitudes somewhat less certain.
We see that the winds are to the NW in every beam. In some of the
beams, the extracted winds are fairly constant with time, e.g.,

beams #7 and 9. In other beams, however, the background winds
vary rapidly in time. In beams #3 and 6, which are adjacent beams
(see Fig. 2) the winds are large and negative initially, decrease
rapidly by �1252150 m=s in the SE direction over 30–40 min,
then increase to their initial large/negative values over 50–80 min.
These accelerations happen at nearly the same time, with the
peak changes in the velocities occurring at t�21:2221:7 UT. In
beams #1, 2, and 4, there is also a large SE acceleration in the
background winds at t�22:8223:5 UT. These accelerations are

ARTICLE IN PRESS

Fig. 16. The extracted, smoothed winds from Figs. 13 to 14 for all 10 beams at z�187 km as solid lines.
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also rapid, occurring over 25–30 min, with final wind changes
of �1002150 m=s. The largest SEward accelerations have
amplitudes of @u0=@t�0:1 m=s2. In comparison, the acceleration
of GW #1 or 2 at this altitude is much smaller: @u0=@t�

ð10 m=sÞ=ð20 minÞ�0:01 m=s2. It is also important to notice that
the extracted winds in beams #8 and 10 stop suddenly at
t ¼ 23:0 UT. Examination of Fig. 2 shows that GW #2 disappears
at this time in these beams. This occurs at the same time when a
strong SE acceleration of the horizontal winds is occurring in
beams #1, 2, and 4. Because GWs #1 and 2 are propagating
SEward, they need to propagate through beams #1, 2, and 4 before
arriving in beams #8 and 10 (see Fig. 2). Therefore, something
suddenly blocked their propagation at t�23:0 UT. We will discuss
a possible cause in Section 6.

Finally, the beams in this experiment are equally gridded in the
geomagnetic zonal and meridional directions, with horizontal
distances between the beams in the thermosphere of �50 km.
Since these large SEward accelerations occur in some beams but
not in other beams at the same time, these accelerations were
therefore spatially inhomogeneous in the horizontal direction on
scales of order 502100 km.

It is easy to explain why the neutral winds relax back to their
large/negative values in �50280 min after a SE acceleration
ceases to occur; namely, viscosity is very large in the thermo-
sphere (see Section 6.3). However, it is more difficult to explain
the origin of the large SEward accelerations. We will argue in
Section 6.2 that these SEward accelerations may be due to the
dissipation of SEward-propagating GWs that are excited by
the same process which excited GWs #1 and 2, and that these
SEward-propagating GWs are secondary GWs excited by the
breaking of mountain waves near the mesopause.

5. GW amplitude and approximate plasma response

Although the GW dissipative dispersion relation, Eq. (1), can be
used iteratively to calculate the winds as a function of altitude
(see Section 4), it cannot be used to calculate the amplitude of a
GW as a function of altitude. On the other hand, ray tracing can be
used to determine the amplitude of a GW as a function of altitude.
We have ray-traced GWs #1 and 2 through the extracted, neutral,
background winds shown in Fig. 9a for beam #8. The resulting
ray-traced lzðzÞ profiles are shown in Fig. 17 for all 10 phase lines
(solid lines), along with the experimentally determined values.
We see that ray tracing accurately reproduces the observed
values of lz, cutting through most of the data points. Because
the ray-trace code also solves the dispersion relation Eq. (1),

Fig. 17 is essentially a check that the extracted wind solutions
shown in Fig. 9a are accurate. Note that there are small
discrepancies in Fig. 17. These discrepancies are located where
lz changes rapidly with altitude, and occur because we extract
these winds using the lz profiles with a three-point running
average, whereas Fig. 17 shows the experimentally determined lz

profiles.
Ray tracing also determines the GW’s momentum flux as a

function of altitude, up to an unknown constant factor a which
multiplies the GW’s amplitude. This factor accounts for the
unknown source and initial amplitude of the GW. In a manner
similar to Hines (1968), for each of the wave’s constant phase
lines, we calculate the GW momentum flux, horizontal velocity,
and vertical velocity as

� aðjfuH0 ew	0j2Þ1=4cos2ðort �

Z
m dzþ bÞ, (40)

� aðjfuH0fuH
	

0j
2Þ

1=4 cosðort �

Z
m dzþ bÞ, (41)

aðjew0 ew	0j2Þ1=4 cosðort �

Z
m dzþ bÞ, (42)

respectively, where b is the phase offset, and where we have
assumed that no wave reflection has occurred. If partial wave
reflection occurs (as is expected, since these waves are close to
evanescence and the wind shears are large at z�1802200 km), the
amplitudes will be smaller for z4200 km. We transition from one
phase line to the next where the phases are �p=2, half-way
between the wave maxima and minima. Contours of the
horizontal flux of vertical momentum are shown in Fig. 18a for
GWs #1 and 2 using Eq. (40). Here, a was chosen so that the
theoretical results roughly agree with the ion velocity and
electron density measurements (see below). We see that the
momentum fluxes peak at altitudes of z�2202250 km. Addition-
ally, the momentum flux profile is different for each phase line,
and clearly depends on the background wind. For example, the
momentum fluxes peak at the highest altitudes for phase lines #1,
2, 6, and 7. For these phase lines, the winds are larger to the NW
for z4235 km (see Fig. 9a), which leads to higher penetration
altitudes prior to wave dissipation.

Contours of the horizontal and vertical velocity perturbations
are shown in Fig. 18b and c, respectively, using Eqs. (14), (15), (41),
and (42). We note that the GW’s horizontal and vertical velocity
perturbations generally peak at similar altitudes. When u0H�w0,
this is an indication that the wave intrinsic frequency is nearly
equal to the buoyancy frequency. Note also that the GW’s
horizontal and vertical velocity perturbations maximize at much
higher altitudes, i.e., z�2102250 km, than dNe=Ne (see Fig. 2).

ARTICLE IN PRESS

Fig. 17. All 10 jlzðzÞj profiles obtained by ray-tracing GWs #1 and 2 through the extracted winds in Fig. 9a from beam #8 (solid lines). Profiles are offsetted by 1000 km. As

before, GWs #1 and 2 are separated by a hatched region. The dot lines show lz ¼ 0 for each constant phase line. We use the same symbols for the phase lines as in Fig. 8.
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To estimate the plasma response to this GW, the ion continuity
and momentum equations need to be solved with the appropriate
drag, heating, and cooling processes taken into account. Since we
only seek an approximate solution, we first assume that Oþ is the
dominant ion in the region of interest. This assumption is quite
accurate above z�200 km. The electron continuity equation is
then (e.g., Schunk and Nagy, 2000)

@Ne=@t þ=:ðNevOþ Þ ¼ Q � L, (43)

where Ne is the electron density, vOþ is the ion velocity in the
direction of the magnetic field, Q is a production term, and L is a
loss term. Here, we have neglected drag, friction and other
coupling processes which may be important when assessing the
full impact of a GW on the plasma (Kirchengast et al., 1996). We

assume that the ion velocity roughly equals the component of the
GW velocity parallel to the magnetic field.

At PF, the magnetic field is nearly vertical, with a magnetic dip
angle of I ¼ 77:5
 and an angle clockwise from north of
z ¼ �154:3
. The unit vector pointing along the direction of the
magnetic field (which is the same as the direction of beam #10) is
given by Eq. (25), i.e., AB, where y ¼ 77:5
 and z ¼ �154:3
. We
assume that the GW’s amplitude is linear, and write the
perturbation velocity vector as

v0 ¼ u0 îþ v0 ĵþw0k̂

¼ ðu00 îþ v00 ĵþw00k̂Þ expðifkxþ lyþmz�ortgÞ

¼ ðu00 îþ v00 ĵþw00k̂Þ expðifÞ, (44)

ARTICLE IN PRESS

Fig. 18. (a) Contours of GW horizontal flux of vertical momentum. The maximum value on the color scale is �1600 m2=s2. (b) Contours of horizontal velocity using Eq. (14).

The maximum value is 47 m/s. (c) Contours of vertical velocity using Eq. (15). The maximum value on the color scale is �40 m=s. All contours are shown in intervals 10% of

their maximum values. The color bar at the far right side of each plot shows the maximum (top) and minimum (bottom) colors used for these 10% intervals.
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where u00, v00, and w00 are the zonal, meridional and vertical
velocity amplitudes of the GW (i.e., along a constant wave
phase line). Additionally, the wave phase is f from Eq. (23). The
plasma response is also linear with our assumptions. The
component of the GW perturbation velocity along the direction
of the magnetic field is then

vOþ ¼ v0:AB ¼ ½cos yðu00 sin zþ v00 cos zÞ þw00 sin y� expðifÞ (45)

¼ ½u0H0
cos y cosðz�cÞ þw00 sin y� expðifÞ, (46)

where u0 ¼ u0H cosð90� cÞ ¼ u0H sinc and v0 ¼ u0H sinð90� cÞ ¼
u0H cosc. The perturbation ion velocity vector is then

vOþ ¼ vOþAB ¼ vOþ0ðcos y sin zîþ cos y cos zĵþ sin yk̂Þ expðifÞ,
(47)

where vOþ 0 is the ion amplitude along a constant wave phase line.
Fig. 19a shows contours of the modeled ion velocity, vOþ , using
Eq. (47). We see that the ion velocity peaks at z�2102250 km,
above the altitude where dNe=Ne peaks, as has been noted
previously (Kirchengast et al., 1996). Additionally, Fig. 19a very
similar to the vertical velocity contours in Fig. 18c, because the
magnetic field lines at PFISR are nearly vertical. Although the ion
velocity data shown in Fig. 6 are not very accurate, we can still use
it for comparison purposes, especially at 180 kmozo250 km. We
see that in general, the ion velocities peak at altitudes of
z�2202250, which agrees qualitatively with Fig. 19a. Note that
the peak values for the majority of the phase lines in beam #8 are
20–30 m/s, consistent with Fig. 6.

We can also estimate the electron density perturbations
that result from this GW using this simple, single-ion model.
Because the magnetic field line is not parallel to the direction of

GW propagation, the effective horizontal wavelength along the
magnetic field line, lB, is larger than the GW’s horizontal
wavelength:

lB ¼
lH

cosðz�cÞ
. (48)

Because the angle between the magnetic field line and GWs #1
and 2 is 64 and 53
, lB ¼ 495 and 340 km, respectively. We can
rewrite the ion velocity perturbation as

vOþ ¼ vOþ 0ðcos yîH þ sin yk̂Þ expðiðkBxB þmz�ortÞÞ, (49)

where kB ¼ 2p=lB, îH ¼ ðsin zîþ cos zĵÞ is the unit vector of the
projection of the magnetic field onto the horizontal plane in
geographic coordinates, xB is the length in this projected
horizontal plane, and kBxB ¼ kxþ ly. The total electron density
then is a mean background component plus an oscillatory
component:

Ne ¼ Ne þ dNe expðiðkBxB þmz�ortÞÞ ¼ Ne þ dNe expðifÞ. (50)

Note that dNe=Ne has the same wave phase as the GW, up to
factors of �1 or �i. Eq. (50) shows that assuming a single-ion
species and neglecting chemical and drag processes, the phase f
of the created electron density perturbations is the same as that
for the GW (with the exception of a constant phase shift). Note
that this assumption allowed us to approximate the lz profiles
determined from the electron density perturbations as being the
same as the lz profiles for the GW in Section 3. We note that this
approximation is best for z\200 km, where our assumptions are
most applicable.

Plugging Eqs. (49) and (50) into Eq. (43), neglecting the
production and loss terms, and linearizing, the relative electron

ARTICLE IN PRESS

Fig. 19. (a) Contours of the calculated ion velocities using Eq. (45). The maximum value on the color scale is �42 m=s. (b) Contours of the calculated relative electron density

perturbation, dNe=Ne , using Eq. (51). The maximum value on the color scale is �0:1. All contours are shown in intervals 10% of their maximum values. The color bar at the

far right side of each plot shows the maximum (top) and minimum (bottom) colors used for these 10% intervals.
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density perturbation is

dNe

Ne

’ �
i sinyvOþ 0

or

1

Ne

dNe

dz

 !

þ
1

or
ðkB cos yþm sin yÞvOþ 0 � i sin y

dvOþ 0

dz

� �
. (51)

The terms in the square bracket on the RHS of Eq. (51) are the
divergence of the ion velocity, r:vOþ . This term is small if the fluid
moves a distance vertically which is much less than the density scale
height. In this case, the vertical distance the neutral fluid moves
from GWs #1 and 2 is Dz�w0tr=4�ð20 m=sÞð24 minÞ=4�7 km,
which is much less than the density scale height. Therefore, we
can set =:vOþ ’ 0 here. Although the magnitude of dNe=Ne is
approximately proportional to the amplitude of the GW’s vertical
velocity, dNe=Ne depends primarily on where the background
electron density Ne increases/decreases rapidly with altitude.

By assuming that advection is more important than chemical
and drag effects, we see that the ion velocity lags 90
 behind the
electron density perturbation. Using �i ¼ expð�ip=2Þ and Eq. (51),
Eq. (50) becomes

Ne

Ne

�1þ
sin yvOþ 0

or

1

Ne

dNe

dz

 !
exp½iðkBxB þmz� ½ort þ p=2�Þ�. (52)

Therefore, for fixed xB and z, the wave phase for the electron
density perturbation, ort0 þ p=2, is the same as the wave phase
for the ion velocity, ort, at t0 ¼ t � p=2or , which is a quarter of a
wave period earlier than for the ion velocity when advection is the
only important effect.

Fig. 19b shows contours of the electron density perturbation,
dNe=Ne, using Eq. (51) with r:vOþ ¼ 0. We see that dNe=Ne peaks
at z�1802200 km, in rough agreement with Fig. 2. Note that this
peak occurs where Ne increases rapidly with altitude at the
bottomside of the F region. Fig. 20 compares the theoretical
calculation of dNe=Ne with the data. We see that this simple
theory, especially the shape of the curves, agrees reasonably well
with the measured data. However, the theoretical amplitudes are
up to 50% smaller for some of the phase lines at the lowest
altitudes. (Note that increasing the scaling factor & by 50% would
make theory agree better in Fig. 20, but the theoretical ion
velocities would then be 50% too large in Fig. 19a.) The
discrepancy between theory and experiment may be due to the
neglection of ions other than Oþ (important for zo200 km), drag,
chemical and other processes in the electron density response.
There are also uncertainties in the magnitude of the measured
dNe=Ne and Vlos.

6. Proposed source of the GWs and SEward accelerations

In this section, we describe a possible source for GWs #1 and 2.
We show how these GWs, in part, may have helped to create the

SEward accelerations of the neutral winds observed in beams #1,
2, 3, 4 and 6. We also explain how these SEward accelerations may
have caused the disappearance of GW #2 for t423:0 UT in beams
#8 and 10.

6.1. Lower atmospheric source of GWs

GWs #1 and 2 likely originated in the lower atmosphere,
because they had medium-scale horizontal wavelengths and
horizontal phase speeds less than �160 m=s. At the time of these
observations, it was very cold in PF, Alaska, and no convection was
occurring. There was, however, winds blowing over nearby, tall
mountains in Alaska. Fig. 21 shows vectors of the winds at 500 mb
(at approximately 5000 m or �16400 ft) over Alaska just at the
end of this data window, at 00:00 UT on 14 December 2006. The
length of the vectors indicates the amplitude of the horizontal
winds, with the maximum for this time of 24 m/s. PFISR is
indicated by the red star. This figure shows a northward flow over
north-central Alaska, ahead of a storm over the northern Bering
Sea. The strongest winds were between balloon observations at
Fairbanks (just south of PFISR) and stations on the Bering coast;
this is consistent with accelerations within the confluent flow
ahead of the storm. The storm was drifting slowly eastward, but
had not moved much in the previous 12 h, and the 500 mb winds
over northern Alaska remained fairly constant through this period
(Pete Stamus, personal communication).

Fig. 21 also shows a rough sketch of the mountains taller than
�200023000 m as brown shading. (Note that there are many
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Fig. 20. dNe=Ne from a simple, single-ion model using Eq. (51) (solid line) and from the data (dash line).

Fig. 21. Wind vectors over Alaska at 0 UT on December 14, 2006 (purple arrows).

Length of vectors is proportional to the speed, which has a maximum value of

24 m/s. PFISR is shown as a red star. Areas with large mountains taller than

�200023000 m are shown as brown shading. (For interpretation of the references

to color in this figure legend, the reader is referred to the web version of this

article.)
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mountains taller than 4000 m in these shaded areas.) We see that
the winds are northward over the mountains 400 km to the NW of
PFISR, and are NWward and northward over the mountains
400 km to the south and SE of PFISR, respectively. The region with
strong winds to the NW of PFISR is approximately 30240


counterclockwise of north from PFISR. Since the tallest mountains
are at least 12,000 ft, we estimate that the non-dimensional
mountain height hN=U is about 3.0, a value that can be associated
with significant mountain-wave generation (Dave Broutman,
personal communication). The horizontal scales of these waves
require koN=U ¼ 0:0008 m�1, or lH�10 km.

Mountain waves were therefore likely excited from wind flow
over those mountains to the NW, south, and SE of PFISR. Since
mountain waves have �0 phase speeds, they propagate nearly
straight upwards into the mesosphere, where they become non-
linear and break (Fritts and Alexander, 2003). After breaking and
depositing momentum over scales of 20–30 km, we hypothesize
that they excited larger-scale, high-frequency, secondary GWs
via the horizontal forcing mechanism described in Vadas et al.
(2003). These secondary GWs would have had lH�10� 600 and
tIr�7� 60 min, and would have been excited preferentially in
and against the direction of the breaking waves. But because the
extracted neutral winds in the thermosphere are strong and to the
NW, as determined in Section 4, only those GWs propagating
nearly opposite to the background winds, or SEward, would have
survived to altitudes of z�200 km. Thus, those secondary GWs
excited from breaking mountain waves to the NW, but not to the
S or SE, of PFISR would have been able to propagate to z�220 km
at PFISR.

As further ‘‘proof’’ of this hypothesis, we now show that any
GW excited at z�80 km over the mountains NW of PFISR must
have had a wave period of �21 min to propagate to the F region
directly above PFISR. Fig. 22 shows a sketch of this proposed
mechanism. We see mountain waves being excited from the
northward wind V in the lower left portion of the figure. These
waves travel upwards and break at z�80 km. The yellow shaded
region shows the region which is horizontally accelerated because
of mountain wave breaking. The purple and blue dotted lines
show some of the secondary GWs which are excited by this
horizontal forcing. Those excited GWs which propagate to the
thermosphere above PFISR propagate along the blue dotted line.
The angle between this wave breaking region and the region at
z ¼ 220 km above PFISR is y ¼ tan�1ð140 km=400 kmÞ ¼ 19
. Since
a GW’s frequency is related to its propagation angle and the
buoyancy period via o=N ¼ sin y (e.g., Kundu, 1990) (neglecting
background horizontal winds), only GWs with ground-based
periods of

tr ¼
tB

sin y
(53)

can travel along the dark blue dotted line and intersect the PFISR
beams at z�220 km. Using an average buoyancy frequency of N ¼

0:015 rad=s and y ¼ 19
, any GW propagating along this line must
have a ground-based period of 21 min. This is in good agreement
with the periods of GWs #1 and 2.

6.2. Thermospheric body forces from dissipating GWs

GWs transport momentum; when they dissipate in the
thermosphere, they transfer that momentum to the background,
neutral fluid, thereby accelerating that flow (e.g., Hines and
Hooke, 1972). The vertical divergence of the average momentum
flux of the primary wave describes the horizontal acceleration of
the fluid:

DF ðx; tÞ ¼ �ð1=rÞ@ðru0w0Þ=@z. (54)

VF2006 showed that when GWs from a convective plume
dissipate in the thermosphere, they create a horizontal body force
in the direction they are propagating prior to dissipating. They
showed that even a small neutral wind shear of �30 m=s in the
lower atmosphere is large enough to create an asymmetry in the
GW spectrum that results in a thermospheric body force. They
found that this body force peaks at z�1802190 km, and that this
acceleration is rapid, occurring over time scales of �30 min. It is
also known that a white noise spectrum of GWs from the lower
atmosphere dissipates at z�1252250 km (Vadas, 2007). Finally,
only those GWs with horizontal wavelengths lH4100 km and
sufficiently large vertical wavelengths can propagate to the
bottomside of the F layer prior to dissipating (Vadas, 2007; Fritts
and Vadas, 2008). Because the horizontal and vertical scales of the
secondary GWs are similar to those excited from the convective
plume studied in VF2006, it is likely that a spectrum of secondary
GWs excited by breaking mountain waves creates a thermospheric
body force at z�1802190 km.

We now connect the above theoretical framework with our
hypothesis of the source of the GWs observed by FPISR. We
hypothesize that the tropospheric winds shown in Fig. 21 created
mountain waves, which broke at z�80 km, creating large regions
with rapid horizontal accelerations. Because these regions are
coherent and last for several primary wave periods, they radiated
high-frequency, large-amplitude GWs for several wave periods.
Because of the coherency of the forcing, these secondary GWs
appear as horizontally moving wave trains at higher altitudes
(Vadas et al., 2003). However, because the duration of the
horizontally accelerated region is limited to several primary wave
periods, or 30 min to several hours, the duration of the wave train
is also limited to several hours. This is why we likely see GW #1
last for only an hour, and GW #2 last for only 1.5 h. We postulate
that each GW is from a different horizontal acceleration at
z�80 km, that these different forcings were separated by an hour
in time, and that these different forcings may have also been
caused by wind flow over different mountain ridges/peaks. Note
that the excited secondary GWs were excited propagating
primarily N, NW, NE, S, SW, and SE (Vadas et al., 2003). For those
SEward-propagating secondary GWs, many with larger lz propa-
gated up to z�180 km (Vadas, 2007). At this altitude, most of the
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Fig. 22. Schematic showing the location of the PSISR (lower right-hand corner)

and the mountains to the NW of PFISR. Mountain wave generation and breaking is

shown, along with the excitation of secondary GWs which travel along the dark

blue dot lines to the F region over PFISR. All GWs propagating along this dark blue

dot line have ground-based periods of �21 min, neglecting winds. (For interpreta-

tion of the references to color in this figure legend, the reader is referred to the web

version of this article.)
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excited spectrum with (1) lHo100 km and (2) lH4100 km and
lz5100 km, dissipated, similar to GWs from convective plumes.
GWs #1 and 2 survived to much higher altitudes, however,
because they had horizontal wavelengths of lH4100 km and
vertical wavelengths of lz480 km (Fritts and Vadas, 2008).
Because these secondary GWs were moving SEward, the thermo-
spheric body forces they created upon dissipating were SEward
(VF2006). This is what is observed in the data. Additionally, the
rapid acceleration that accompanies dissipation from a spectrum
of GWs was also observed. These SEward accelerations were large
at t�21:5 UT in beams #3 and 6, and were large at t�23 UT in
beams #1, 2, and 4. Thus, the SEward neutral wind accelerations
seen in the extracted winds indicate that thermospheric, neutral
body forcing from dissipating GWs may have occurred. Although
VF2006 estimated a full width half-max acceleration of ’
0:1 m=s2 from a single convective plume, which is approximately
the size of the accelerations observed here, the GWs here are
secondary GWs excited from mountain wave breaking, not
primary GWs excited from convection. A detailed study with (1)
mountain wave generation and breaking, and (2) secondary GW
excitation, propagation, and dissipation are needed to better
compare this hypothesis with the data.

Finally, as mentioned previously, GW #2 disappeared from
beams #8 and 10 at 23:00 UT. From Fig. 16, the neutral winds were
rapidly accelerated over 25–30 min towards the SE from �� 250
to �� 100 m=s in beams #1, 2, and 4 at this time. These three
beams are upstream of the propagation direction of GWs #1 and 2
from beams #8 and 10. We hypothesize that beams #1, 2 and 4
were at the edge of the body force, and that the main part of
the body force was centered over beams #8 and 10. Since the
winds in beams #1, 2 and 4 decreased to �100 m=s at z�190 km
(see Fig. 16), the winds in beams #8 and 10 would be even closer
to zero. Since GW #2 dissipates at zdiss�165 km when the
background winds are zero (square symbol in Fig. 2 in Vadas
and Nicolls, 2008), we postulate that the reason GW #2
disappeared at 23:00 UT in beams #8 and 10 was because this
GW encountered a very small thermospheric wind there because
of the SEward thermospheric body force, and therefore dissipated
at a much lower altitude than when the winds were �� 250 m=s
there (i.e., at zo190 km). This would have prevented GW #2 from
being observed in beams #8 and 10 for t423:0 UT, but it would
not have prevented this GW from being observed N, NE, and NW
of these beams, where the body force was less strong and
therefore the NW thermospheric winds were not as weak.

6.3. Deceleration of the neutral wind from thermospheric dissipation

As mentioned previously, large SEward accelerations occurred
at t�21:5 UT in beams #3 and 6. After these accelerations ceased,
NWward accelerations were observed in each of these beams.
These NWward accelerations occurred over 50–80 min, and
resulted in the winds relaxing back to their former large values
of �� 250 m=s towards the NW. This relaxation likely occurred
because of kinematic viscosity. In this section, we investigate the
time scales that viscosity acts to smooth out horizontal and
vertical variations in the neutral winds created by thermospheric
body forces.

Suppose a large, neutral, horizontal wind is created at
z�190 km from a thermospheric body force. Neglecting non-
linear effects and pressure divergences associated with vertical
flows, the deceleration of this wind from kinematic viscosity is

@U

@t
’ nrU, (55)

@V

@t
’ nrV , (56)

where r � @2=@2xþ @2=@2yþ @2=@2z. We assume that U and V

vary in the horizontal and vertical directions as Gaussian
functions for simplicity. We choose decaying solutions of the form

U ¼ U0 expð�t=dÞ exp
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V ¼ V0 expð�t=dÞ exp
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, (58)

where U0 and V0 are the maximum values of U and V at t ¼ 0,
respectively. Note that the Gaussian distributions in x, y, and z

capture the rapid and symmetric increase and decrease in the
winds from a localized thermospheric body force (VF2006).
Substituting Eqs. (57) and (58) into Eqs. (55) and (56), and
evaluating the result at the location where the wind is the
strongest (i.e., at ðx0; y0; z0Þ), the time scale for decay, d, is

d ’ n�1 1

s2
x

þ
1

s2
y

þ
1

s2
z

 !�1

. (59)

If the vertical variation of the created neutral wind is smaller
than the horizontal variation, the decay time scale is

d ’ s2
z =n. (60)

If we assume a full vertical depth of the created wind of
�50260 km, then sz ’ 55=4:5 ’ 12 km. Using the MSIS tempera-
ture profile assumed in Vadas and Nicolls (2008), n ’ 1:2�
105 m2=s at z�190 km. Then from Eq. (60), d�20 min. Therefore,
the created neutral wind at z ’ 190 km decreases to 37%, 14%, and
5% of its initial value after �20, �40, and �60 min, respectively,
because of kinematic viscosity. Within an hour and a half of the
horizontal wind being created at z�190 km, it will have
completely dissipated.

A further implication of this result is that neutral wind shears
in the thermosphere (in excess of those created from tides),
created from thermospheric body forces dissipate rapidly. For the
zonal wind given by Eq. (57), the vertical wind shear is ðdU=dzÞ=

U�� ðz� z0Þ=s2
z , which is jðdU=dzÞ=Uj�1=sz at jz� z0j�sz. Setting

sz�12 km and U�� 200 m=s at z�190 km, the initial shear is
jdUH=dzj�17 m=s=km, which is quite large. However, within �20,
�40, and �60 min, this shear is reduced to jdUH=dzj�6, 2, and
1 m=s=km, respectively, because of the overall decrease in the
created neutral wind.

7. Conclusions

In this paper, we analyzed the temporal evolution of two GWs
observed during a 4-h time period by PFISR on 13 December 2006
from 20:00 to 24:00 UT. In order to estimate the temporal
variability of the extracted background winds which the GWs
propagated through, we calculated the GW vertical wavelength
along each maximum constant phase line. We then extracted the
neutral, background, horizontal winds along the direction of GW
propagation as a function of altitude every 10–12 min for all 10
beams by inputting lz and the measured GW parameters into an
accurate, dissipative GW dispersion relation with MSIS tempera-
tures. We find that the neutral, background wind along the
NW–SE direction is to the NW and is composed of a slowly varying
mean component with an average magnitude of �� 150 m=s, plus
a large-scale, slowly moving, upward-propagating wave with
lz�80 km and an observed period of �325 h. We find that the
mean wind increased towards the NW over the 4 h observation
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window, and seemed to peak near 23–24 UT (at the end of the
observation window). Because this time corresponds to 14–15 LST
(a few hours after local noon), this ‘‘mean’’ wind was therefore
likely due to the migrating diurnal tide, which is the dominant
tide at z\200 km. While there is some uncertainty as to the
absolute direction of the mean wind, it is likely in the NW
direction from 20:00 to 24:00 UT. During geomagnetically quiet
times, thermospheric winds above PF typically blow geographi-
cally NE at 00 UT, due to the in situ forced solar diurnal tide. With
increasing magnetic activity, ion-drag forcing becomes a progres-
sively larger contributor to the wind’s momentum balance. This
additional forcing by ion-drag tends to be directed NWward at
00 UT. Overall, the meridional component of the wind usually
blows northward at 00 UT, whereas the zonal component is
eastward on quiet days, but westward on active days (Mark
Conde, personal communication).

Additionally, the �325 h wave increased the NW wind at
z�190 km to �� 250 m=s, and decreased the NW wind at
z�230 km to �� 100 m=s, causing the background wind to
decrease significantly with altitude over this altitude range. Note
that the above mentioned method only determines the compo-
nent of the background wind along the direction of GW
propagation, which is NW–SE for these GWs. However, using the
mean component of the anti-parallel ion velocity, Vadas and
Nicolls (2008) found that the total wind vector was in a similar
direction, �40
 counterclockwise from north.

The combined background wind caused the observed GWs to
often have vertical propagation angles at z�1802200 km, causing
the GWs to be either evanescent or nearly evanescent at these
altitudes. Because their amplitudes continued to increase up to
z�1102225 km, however, if the GWs were evanescent, then they
must have tunneled through the vertical wind barrier. This was
likely possible because lz was much larger than the vertical extent
of the wind barrier.

We then analyzed the extracted winds for all 10 beams in the
PFISR experiment at z�190 km. We found that strong and rapid
SEward accelerations in the winds occurred at these altitudes in
the N, NE, and NW beams, with magnitudes as large as �0:1 m=s2.
In comparison, the acceleration of GWs #1 or 2 at this altitude was
much smaller �ð10 m=sÞ=ð20 minÞ�0:01 m=s2. Additionally GWs
#1 and 2 did not dissipate until z�220 km, significantly above this
altitude; therefore, it is highly unlikely that these SEward
accelerations were due to GWs #1 and 2. These SEward
accelerations created sudden changes in the neutral winds of
�1252150 m=s within 25–40 min. These accelerations appeared
at similar times in adjacent beams, but did not occur in every
beam, implying that there was a horizontal variation in the
SEward accelerations on scales of order �502100 km. We also
found that the winds relaxed back to their former values over time
scales of 50–80 min, consistent with relaxation time scales from
kinematic viscosity. We compared the observed thermospheric
accelerations with previous work, and found that the time scales
and peak altitudes of the accelerations are consistent
with thermospheric body forcing which occurs when upward-
propagating GWs from the atmosphere dissipate in the lower
thermosphere. We hypothesized that these SEward accelerations
are due to the dissipation of SEward-propagating GWs excited by
the same mechanism which excited the observed GWs. We also
hypothesized that these GWs are secondary GWs which were
excited from mountain wave breaking near the mesopause
30240
 to the NW of PFISR; this hypothesis is supported by the
fact that, horizontally localized tropospheric winds were flowing
northward over the Alaskan mountains 30240
 to the NW of
PFISR at the observation time, and that both observed GWs had
ground-based periods of �20224 min, indicative of the frequen-
cies that GWs excited near the mesopause must have in order to

be observed by the PFISR radar beams in the F region. We do not
know how common it is for GWs in the thermosphere to be
secondary GWs from mountain wave breaking, because PFISR
recently began operation, and only some analysis has been
performed to date. Note that previous high-latitude measure-
ments did not have the unique capability to measure the GW
horizontal wavelengths and direction of propagation (e.g., Pinger,
1979), and therefore could not have determined the source of
these waves. However, wintertime conditions over Alaska fre-
quently exhibit large winds over the mountains and favorable
stratospheric and mesospheric winds, which allow mountain
waves (which have zero-phase speeds) to propagate to the upper
mesosphere where they can break and cause the excitation of
secondary GWs. Therefore, we believe that this source of GWs
may be common in the wintertime at high latitudes. Further study
with other wintertime PFISR data sets which contain medium-
scale TIDs (MSTIDs) are needed to verify this conjecture.

Finally, we inputted the calculated winds into a ray-trace
model which incorporates thermospheric dissipation, and com-
puted the horizontal and vertical velocity amplitudes of the GWs
using a dissipative polarization relation. Using a simple, single-ion
model, we estimated the plasma response. We found that the GW
velocity amplitude along the direction of the magnetic field over
PFISR agrees well with the measured LOS ion velocities, up to a
constant multiplying factor which accounts for the unknown
initial wave amplitude. The amplitudes peaked at z�2202250 km
for these GWs. We also found that the calculated electron density
perturbations, dNe=Ne, agree qualitatively with the observed
values. Here, dNe=Ne peaks at z�1802190 km, similar to the
measured values, because dNe=Ne is more sensitive to altitudes
where the background electron density Ne varies rapidly with
altitude, rather than where the GW amplitude is maximum.
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