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[1] Compressed sensing, a method which relies on sparsity to reconstruct signals with
relatively few measurements, provides a new approach to processing radar signals that is
ideally suited to detailed imaging and identification of multiple targets. In this paper,
we extend previously published theoretical work by investigating the practical problems
associated with this approach. In deriving a discrete linear radar model that is suitable for
compressed sensing, we discuss what the discrete model can tell us about continuously
defined targets and show how sparsity in the latter translates to sparsity in the former.
We provide details about how this problem can be solved when using large data sets.
Through comparisons with matched filter processing, we validate our compressed sensing
technique and demonstrate its application to meteors, where it has the potential to
answer open questions about processes like fragmentation and flares. At the cost of
computational complexity and an assumption of target sparsity, the benefits over pulse
compression using a matched filter include no filtering sidelobes, noise removal,
and higher possible range and Doppler frequency resolution.
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1. Introduction

[2] Compressed sensing [Donoho, 2006] is a new data
acquisition and processing technique that leverages sparsity
in the signal being measured in order to reduce the number
of measurements needed to accurately reconstruct the signal.
Many signals of interest are sparse or compressible and can
be well-approximated by a relatively small amount of
information when compared to their “raw” form. The current
approach in many fields is to sample the data in its raw form
and then compress and store it. Often it is only the “useful”,
compressed information that was desired in the first place.
Compressed sensing allows one to skip the inefficient raw
sampling step and instead acquire an entire signal with an
amount of information proportional to the signal’s com-
pressed representation.
[3] Because radar signals are quite recognizably sparse in

range and frequency, with typically few targets of interest
within range, radar is a natural fit for compressed sensing.
The role of sparsity in radar signal processing and how
compressed sensing techniques relate to established proces-
sing methods is discussed by Potter et al. [2010] with an
emphasis on synthetic aperture radar. The potential for

compressed sensing to reduce radar hardware complexity
and cost is noted by Baraniuk and Steeghs [2007] and Ender
[2010], while Herman and Strohmer [2009] explores the use
of compressed sensing for increased target detection reso-
lution. It is this latter use that we are most interested in as a
way to increase the resolution of meteor measurements made
with high-power large-aperture (HPLA) radars.
[4] When a meteoroid enters the Earth’s atmosphere, it

collides with air molecules and heats up, causing ablation.
This results in the formation of a plasma, called a meteor,
which we can measure with an HPLA radar due to electro-
magnetic scattering. The plasma surrounding the meteoroid
is called a meteor head, while the plasma that is left behind is
called a meteor trail. Trails are classified as specular if the
scattering occurs from a trail that is perpendicular to the
radar beam and as nonspecular otherwise, the latter normally
occurring when the radar beam is nearly perpendicular to the
Earth’s magnetic field. Unfortunately, the evolution of the
plasma and the nature of the scattering from both the head
and trail are not well understood and depend on the density
of plasma and its orientation with respect to the background
magnetic field [Close et al., 2004]. Often the meteor head,
assumed to be small relative to the range resolution of the
radar, is treated as a point scatterer, but this will not suffice
for elucidating the more complicated aspects of meteor head
echoes. Since in reality a plasma is a distributed collection of
charged particles, we require a measurement method that is
suitable for range- and Doppler-spread and allows for high
range resolution imaging; our compressed sensing technique
provides such a method.
[5] Compared to the existing radar signal processing liter-

ature, compressed sensing with a discrete radar model is most
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closely related to the amplitude domain analysis of Vierinen
et al. [2008] and the inversion filters (also known as mis-
matched filters or zero sidelobe filters) of Lehtinen et al.
[2009], Damtie et al. [2008], and others. The amplitude
domain method of Vierinen et al. [2008] uses a range sparsity
assumption like our compressed sensing method, but it
requires the user to manually specify the target model with
respect to range before applying the inversion procedure
whereas compressed sensing is fully automated. Inversion
filters are simpler to implement and provide unbiased signal
estimates for range-spread targets, but they require the use of
specific transmission codes (so-called perfect codes) to
achieve peak sensitivity. At the cost of some computational
complexity and an assumption of range-Doppler target
sparsity, compressed sensing combines many of the strengths
of these existing techniques into a general approach suitable
for a wide class of transmission waveforms. With respect to
the standard of pulse compression using a matched filter,
signal processing benefits include no filtering sidelobes,
noise removal, and high range and Doppler frequency reso-
lution not directly constrained by the sampling rate or pulse
length. In terms of applications, this makes compressed
sensing ideal for both detailed imaging of localized (but still
possibly range- and Doppler-spread) targets and identifica-
tion of multiple targets that are closely spaced in range and/or
range rate. Provided that amplitude domain voltage data (as
opposed to correlated and integrated data) is available for
post-processing, no hardware upgrades are required to take
advantage of compressed sensing, and as our examples show
it is even possible in some cases to reprocess existing data
and gain new insights.
[6] Applying compressed sensing requires a suitable radar

model. A common approach, and one that we follow, is to
discretize the target reflectivity in a joint time delay (or
range) and Doppler frequency shift space. That is, we rep-
resent the received signal by a linear function of reflectivity
coefficients, where each coefficient multiplies a time delayed
and Doppler-shifted version of the transmitted signal. Thus,
the discrete signal is expressed in terms of a Gabor frame, a
model which is efficient to compute and is compatible with
the framework of compressed sensing.
[7] Similar models for radar [Herman and Strohmer,

2009] and communication channels [Bajwa et al., 2008]
have been used previously with compressed sensing. With
the same goal of high resolution radar, Herman and
Strohmer [2009] investigate the use of Alltop sequences as
compressed sensing radar waveforms. For their model, they
find that range and Doppler frequency resolution depend on
the inverse of pulse waveform bandwidth and total sampling
time, respectively. They also prove an upper bound on the
target sparsity s for which solution is guaranteed with high
probability and provide simulation results that indicate that
the proven bound can be relaxed to s ≤ m/(2log m), where m
is the number of measurements. The development and
results of Bajwa et al. [2008] proceed in much the same
manner, except for the use of spread spectrum waveforms
and the application to communication channels.
[8] Both prior works provide a good foundation for using

compressed sensing with radar from a theoretical perspective.
What they lack are answers to more practical questions: How

does the discrete model, essentially assuming point targets at
very specific ranges and Doppler shifts, relate to a continuous
radar model that allows distributed targets at arbitrary loca-
tions in the range-Doppler space? How well does the tech-
nique work on real data which inevitably includes effects not
present in the model? How can one implement the technique
efficiently and with possibly large data sets? These are the
questions that we set out to address in this paper.
[9] Our development of a radar compressed sensing

method begins with the derivation of a discrete linear radar
model from a continuous one. From this, we find that solv-
ing using the discrete model gives an approximate lower
bound on the total target reflectivity contained in a range-
Doppler window. The resolution of this window is deter-
mined by the pulse waveform bandwidth and the choice of
Doppler discretization, the latter being limited only by the
number of measurements through a compressed sensing
solution condition. We then describe how to implement our
approach, solving for the target reflectivity using the large-
scale optimization software TFOCS (Templates for First-
Order Conic Solvers) [Becker et al., 2011a]. Finally, we
apply the method to ionospheric plasma data taken with the
Poker Flat Incoherent Scatter Radar and find that the solu-
tion agrees with that of a matched filter, validating the
compressed sensing approach in a practical setting.

2. Compressed Sensing Overview

[10] Under the standard framework for compressed sens-
ing, we seek to determine a vector signal f ∈ Rn using m
linear measurements with m ≪ n. Letting y ∈ Rm denote the
measurement vector, we can in general write its entries as an
inner product yk = 〈y, fk〉 for k = 1,…, m for some fk ∈ Rn.
In matrix notation, we wish to solve for f in y = Ff, where F
is the m � n matrix with columns given by fk. Without
further assumptions, this problem is ill-posed since ordinar-
ily we would require m > n measurements to reconstruct f. A
simple typical case would be where F is the identity matrix
and the measurements yk are just the individual entries of the
signal f. The surprising result of compressed sensing is that,
under achievable conditions, the underdetermined problem
with m ≪ n is solvable.
[11] The first condition is compressibility or sparsity of the

signal, which is a requirement that the signal be well-
represented by a relatively small number of coefficients
corresponding to elements in some dictionary. Given an
orthonormal basis Y ¼ yk ∈ Rn : k ¼ 1;…; nf g , we can
write f as f ¼

Xn

k¼1
xkyk, where the coefficients xk = 〈f,yk〉

are given by the inner product between the signal and each
of the basis vectors. We call f compressible if there is some
orthonormal basis such that f ≈ f s = Yxs, where Y is the
matrix whose columns are the basis vectors yk, x

s is the
vector of coefficients x with all but the largest s entries set
to zero, and s ≪ n. As the success of lossy compression
schemes demonstrate, many signals of interest satisfy this
condition.
[12] The second condition is called incoherent sampling

and pertains to the measurements of the signal. We restrict
our attention to measurements given by the orthonormal
basis F ¼ fk ∈ Rn : k ¼ 1;…; nf g. Given an orthonormal
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basis Y ¼ yk ∈ Rn : k ¼ 1;…; nf g , define the coherence
between F and Y as

m F;Yð Þ ¼ n max
1≤ j;k ≤n

fj;yk

� �2
: ð1Þ

This definition for the coherence comes from Candès and
Romberg [2007], but m can also be defined probabilisti-
cally or for linear measurements that are not given by an
orthonormal basis [see Candès and Plan, 2011]. It can be
shown that m ranges between 1 and n. The incoherent sam-
pling requirement is met when the coherence of the mea-
surement set, F, and the basis with which f is compressible,
Y, is close to 1. Conceptually, this condition ensures that the
measurements are global in a sense, that each measurement
contains information about almost every coefficient of the
signal in the sparsity basis.
[13] If the signal is compressible and incoherent sampling is

performed, then essentially we know that each measurement
contains a contribution from each of the s coefficients. Intui-
tively, we might then expect to be able to reconstruct the signal
from s measurements. This idea is made concrete with the
incoherent sampling theorem presented below in the case of
reconstruction with the Dantzig selector. No matter the spe-
cific setting, the principle of this theorem remains the same: if
the signal is compressible with s coefficients and the sampling
is incoherent, we can reconstruct the signal to within noise and
approximation errors with a small constant times s log n
measurements by solving a convex optimization problem.
[14] Of the compressed sensing methods that account for

noise and only approximately sparse signals, the Dantzig
selector [Candès and Tao, 2007] is of particular interest to
us. Let A represent the measurement matrix whose m rows
are randomly sampled from a population of measurement
vectors with coherence m (for instance, these can be ran-
domly sampled from the rows of FY as defined above).
Also, let the measurements be corrupted by noise given by
z � N 0;s2Ið Þ , a zero-mean i.i.d. Gaussian vector with
variance s2. Therefore, the measurements are given by
y = Ax + z. The Dantzig Selector is the solution to the
optimization problem

x̂ ¼ argmin
x∈Rn

xk k1 subject to A∗ Ax� yð Þk k∞ ≤ ls ð2Þ

where l is a constant that is selected so that the actual signal
obeys A∗ Ax� yð Þk k∞ ≤ ls with high probability. Thus,
the Dantzig selector finds a solution that has minimum ‘1
norm, promoting sparsity, and is highly probable given the
measurement noise. Finally, we have the incoherent sam-
pling theorem, which guarantees that the Dantzig Selector
provides a solution which is within noise error of the exact
solution. Incoherent Sampling Theorem for Dantzig Selector
[Candès and Plan, 2011]: Suppose that a signal x ∈ Rn is
measured as described above, and let l ¼ 10

ffiffiffiffiffiffiffiffiffiffi
log n

p
. Let b

denote a chosen constant, m the coherence of equation (1),
and �s a chosen expected upper bound on the sparsity of x. If
for a positive constant C0 (the exact value is not important
for our purposes), the number of measurements m satisfies

m ≥ C0 1þ bð Þm�s log n; ð3Þ

then the Dantzig selector obeys

x̂ � xk k2 ≤ min
s≤�s

C1 1þ a2
� �� x� xsk k1ffiffi

s
p þ s

ffiffiffiffiffiffiffiffiffiffiffiffiffi
s log n

m

r" #
ð4Þ

x̂ � xk k1 ≤ min
s≤�s

C1 1þ a2
� �� x� xsk k1 þ ss

ffiffiffiffiffiffiffiffiffiffiffi
log n

m

r" #
ð5Þ

with probability at least 1 � 6/n � 6e�b where
a ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ bð Þs log5n=mp
, C1 is a positive constant (value

unspecified), and xs denotes the vector x with all but its
largest s entries set to zero. So we see that the error of the
solution is bounded by the error of any sparse solution
( x� xsk k1, which goes to zero if x is sparse) and the stan-
dard deviation of the measurement noise (s).

3. Discrete Linear Radar Model

[15] In order to use the Dantzig selector to get a com-
pressed sensing solution for radar signals, we first need a
discrete linear model describing the radar that meets the
sparsity and incoherence requirements. Appropriate models
are presented by Herman and Strohmer [2009] and Bajwa
et al. [2008] that discretize the radar signal in a joint time
delay and frequency space. Although we will use a model
that is almost identical to those, the derivation that follows is
nevertheless instructive because of what it tells us about how
continuously defined targets fit within the model.
[16] We begin with the narrow-band radar equation for

(the complex envelope of) the baseband received signal from
a fluctuating distributed target [Van Trees, 2001]:

y tð Þ ¼
Z T

0
s t � lð Þa t � l

2
;l

� �
dl; ð6Þ

where s(t) is the transmitted baseband modulation signal and
a(t, l) is the complex target reflectivity (magnitude and
phase) as a function of time t and delay (range) l. We have
taken the integration interval to be [0, T] to reflect the limited
sampling window, and this carries with it the implicit
assumption that a(t � l/2, l) = 0 outside that range.
Whether one considers a(t, l) to be random or deterministic
does not matter at present. What is important is that we
expect this function to be sparse in both the frequency
domain (Fourier transform with respect to t) and in the delay
domain. To ease further derivation, we define a new function

h t;lð Þ ¼ a t þ l
2
;l

� �
ð7Þ

so that the time variable represents the scattering for a signal
sent at time t (which arrives at the target at t + l/2) rather
than one reaching the target at time t. This results in

y tð Þ ¼
Z T

0
s t � lð Þh t � l;lð Þdl: ð8Þ

[17] The next step is to begin discretizing the model. We
assume that the received signal is sampled at a uniform rate
ts, so that y(t) is represented by a complex discrete sequence
yq = y(qts) with q = 0,…, m where m = T/ts. In addition, we
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restrict our attention to discrete phase-modulated signals
with b bauds and a baud length of tb, so that s(t) = sk for
ktb ≤ t < (k + 1)tb for a complex sequence sk ∈ C with
k = 0, …, b � 1. For ease of notation, let us also infinitely
extend the sequence sk by letting its value for non-existent
indices be zero, sk = 0 for k ≠ 0,…, b � 1. If we assume that
the sampling time is an integer multiple of the baud length,
then we have ts = rtb where r is the under-sampling ratio.
Note that if the reverse is true and over-sampling by an
integer ratio is performed, we can simply duplicate the
modulation sequence by the over-sampling ratio and let
r = 1. In either case, we know that T/tb = rm. With these
assumptions, we can break up the integral in equation (8) as
follows:

yq ¼ y qtsð Þ

¼
Xrm�1

k¼0

Zkþ1ð Þtb

ktb

s qts � lð Þh qts � l;lð Þdl

¼
Xrm�1

k¼0

srq�k�1

Zkþ1ð Þtb

ktb

h qts � l;lð Þdl: ð9Þ

We’re close to the discrete model we want since the integral
in this last equation is dependent on two discrete parameters
(k and q) and can be represented by a matrix or vector.
Unfortunately, we cannot use this matrix/vector as our
unknown variable because it would not be sparse with
respect to q. The sparsity is in the frequency domain, so we
need to introduce a Fourier representation.
[18] Now comes a key observation: s(t) is nonzero only over

0 ≤ t < btb, and h(t, l) is evaluated over the same values in
equation (8). Thus, the result of the model will be the same if
we replace h(t, l) with its Fourier series representation on the
interval 0 ≤ t ≤ nts, whereDf = 1/nts ≤ 1/btb is the smallest
frequency component. The Fourier series is given by

h t;lð Þ ¼
X∞
j¼�∞

hj lð Þe2pijDf t for 0 ≤ t ≤ 1=Df ; ð10Þ

where

hj lð Þ ¼ Df

Z 1=Df

0
h t;lð Þe�2pijDf tdt ð11Þ

¼ ĥw jDf ;lð Þ ð12Þ

defines the Fourier coefficients. As indicated by the notation
in equation (12), one can think of these coefficients as scaled
samples from the windowed Fourier transform of h. This
formulation will be useful later on. Substituting the Fourier
series representation into equation (9) yields

yq ¼
Xrm�1

k¼0

srq�k�1

Zkþ1ð Þtb

ktb

X∞
j¼�∞

e2pijq=nhj lð Þe�2pijDf ldl: ð13Þ

This seems to have made the model more complicated for no
benefit: there are now three discrete parameters and an infi-
nite sum to boot. Notice, however, that e2pijq/n as a function of

j is periodic with period n.Re-parameterizing the infinite sum
leads to

yq ¼
Xrm�1

k¼0

srq�k�1

Xn�1

p¼0

e2pipq=n
Zkþ1ð Þtb

ktb

X∞
l¼�∞

hpþln lð Þe�2pi pþlnð ÞDf ldl:

ð14Þ
Now the result of the integral is indexed by p and k where
p parameterizes the frequency domain (Doppler shift) and
k parameterizes the delay domain. Thus we define discrete
reflectivity coefficients

hp;k ¼
Zkþ1ð Þtb

ktb

X∞
l¼�∞

hpþln lð Þe�2pi pþlnð ÞDf ldl ð15Þ

and arrive at the discrete linear radar model:

yq ¼
Xrm�1

k¼0

Xn�1

p¼0

srq�k�1e
2pipq=nhp;k : ð16Þ

One can think of hp,k as describing the entries of an n � rm
reflectivity matrix H. Then the inner sum of equation (16) is
almost the inverse discrete Fourier transform of the columns
of the reflectivity matrix, as it is only missing a 1/n coeffi-
cient. The outer sum represents a convolution in the time
delay index between the transmitted signal and reflectivity
matrix.
[19] We assume that equation (16) satisfies both of the

requirements that permit a compressed sensing solution:
sparsity and incoherence. Radar targets, even the range-
and Doppler-spread ones, are typically localized enough in
the range-Doppler space that the received signal is well-
approximated by only a few nonzero coefficients hp,k. We
will delve further into this topic later, but it suffices to say
that sparsity in hp,k is a good approximation for our cases of
interest. Whether these measurements qualify as incoherent
depends, of course, on the modulation sequence sq. In
practice, we have used this model successfully with binary
random sequences (sq 2 {1, � 1}), Barker codes, and min-
imum peak sidelobe codes. Alltop sequences were proven to
result in incoherent measurements with a similar model
[Herman and Strohmer, 2009]. Numerous papers discuss the
incoherence properties of convolution or Toeplitz sensing
matrices formed from random sequences [Bajwa et al.,
2007; Romberg, 2009; Tropp et al., 2006] or chirp sequen-
ces [Tropp et al., 2006], a structure seen in the convolution
portion of our model, while Candès et al. [2011] discusses
sensing with Gabor frames, a feature which arises from the
DFT portion of our model. Perfect codes [Lehtinen et al.,
2009] are also likely to have good incoherence properties
given that they already achieve inversion through applica-
tion of the matched filter, but no formal analysis has been
done. So although we have not proven incoherence for any
class of measurements made by this model, we nevertheless
expect that many classes of modulation sequences will admit
a compressed sensing solution.

4. Analysis of Radar Model

[20] Two issues need to be resolved in order for the model
to be useful in practice, including the following.
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[21] 1. We have assumed that the Fourier transform of
h(t, l) with respect to t, ĥð f ;lÞ, is sparsely supported over a
relatively small portion of the range-Doppler space; we need
to show that this implies sparsity of hp,k.
[22] 2. Compressed sensing coupled with the model gives

a solution for hp,k; we need to know what this allows us to
infer about ĥ f ;lð Þ and consequently h(t, l).
[23] We start exploring the relationship between h(t, l)

and hp,k by combining equations (12) and (15) using short-
hand notation:

hp;k ¼
Zkþ1ð Þtb

ktb

h
ĥwð f ;l

	 

e�2pif lÞ*ШnDf ð f Þ

i
pDfð Þdl ð17Þ

where * is the convolution operator and Шað f Þ ≡X∞

k¼�∞
dð f � kaÞ is the Dirac comb with spacing a. We

also rewrite ĥw f ;lð Þ as

ĥwð f ; lÞ ¼ DfF t h t; lð ÞP1=Df t � 1

2Df

� �� �
ð f Þ ð18Þ

where F t represents the Fourier transform with respect to t
and PT (t) is the rect function defined as

PT tð Þ ¼
1 tj j < T=2

0 tj j ≥ T=2
:

(
ð19Þ

Using this notation, the function in brackets in equation (17)
can be further simplified by taking the inverse Fourier
transform, combining terms, and taking the Fourier trans-
form to arrive at an equivalent representation:

ĥw f ; lð Þe�2pif l
	 


∗ШnDf fð Þ
h i

sð Þ

¼ F uF�1
s ĥw f ;lð Þe�2pif l

	 

∗ШnDf fð Þ

h i
sð Þ

¼ F u h u� l;lð ÞP1=Df u� l� 1

2Df

� �
Df

1

nDf
Ш1= nDfð Þ uð Þ

� �

¼ F u h u� l;lð Þ 1
n

XNþn�1

l¼N

d u� ltsð Þ
" #

¼ ĥ f ;lð Þe�2pif l∗gN fð Þ
h i

sð Þ ð20Þ

with N = ⌈l/ts⌉ = ceil(l/ts), ĥ f ;lð Þ ¼ F th t;lð Þ and

gN fð Þ ¼ 1

n

XNþn�1

l¼N

e�2piflts : ð21Þ

From the finite geometric sum formula, the complex expo-
nential representation of sine, and the definition of the sinc
function, one can equivalently write gN ( f ) as

gN fð Þ ¼ e�pi 2Nþn�1ð Þts f sinc nts fð Þ
sinc ts fð Þ : ð22Þ

This allows us to finally write the discrete reflectivity coef-
ficients hp,k in terms of the presumed sparse function
â f ;lð Þ ¼ F ta t;lð Þ:

hp;k ¼
Zkþ1ð Þtb

ktb

ĥ f ;lð Þe�2pif l∗gN fð Þ
h i

pD fð Þdl

¼
Zkþ1ð Þtb

ktb

â f ;lð Þe�pif l∗g k=rb cþ1 fð Þ
 �
pDfð Þdl: ð23Þ

We see that in the Doppler frequency variable p, the coef-
ficients represent samples from the reflectivity function
frequency spectrum â f ;lð Þ after it has been “smeared” by
g⌊k/r⌋+1( f ) through convolution. In the time delay variable k,
the coefficients represent an integration of the reflectivity
function over the corresponding delay window.
[24] For the doubly spread target of Van Trees [2001], we

switch from a deterministic reflectivity function to a probabi-
listic one and invoke the assumption that â f ;lð Þ is a zero-
mean complex Gaussian random variable with autocovariance
given by

E â f ; lð Þâ∗ f ′;l′ð Þ½ � ¼ S f ;lð Þd f � f ′ð Þd l� l′ð Þ ð24Þ

where E denotes expected value and S( f, l) is the target’s
scattering function which describes the returned power as a
function of frequency and range. The process is zero-mean
because the phase of â f ;lð Þ is assumed to follow a uniform
distribution that is independent of the magnitude. In practical
terms, the main difference between the doubly spread model
and the deterministic model is the phase of the returned signal:
the former model produces random phases with respect to
range, while the latter model produces phases that are a fixed
function of range. Which of these is appropriate will depend
upon the application, but both fit equally well with compressed
sensing. In terms of the reflectivity coefficients, the doubly
spread target model results in

E hp;kh∗p;k
h i

¼
Zkþ1ð Þtb

ktb

S f ;lð Þ∗G fð Þ½ � pDfð Þdl ð25Þ

with

G fð Þ ¼ sinc2 nts fð Þ
sinc2 ts fð Þ : ð26Þ

In this case, the relationship between the coefficients and the
actual quantity of interest S( f, l) is even clearer: on average,

the coefficients hp;k
�� ��2 give the total power returned by the

target from ranges ktb ≤ l < (k + 1)tb and frequencies
weighted by G( pDf � f ). Both the deterministic and doubly
spread target models lead to similar interpretations for the
coefficients with the difference amounting to how the phase of
the returned signal adds up.
[25] To illustrate these points and analyze the coefficient

sparsity for the sparsest possible target, consider the case of
a point target with a reflectivity of A initially at range r and
traveling toward the radar with a range rate v. The target’s
time delay and Doppler frequency shift are given by lt ≈ 2r

c
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and ft ≈ 2v
c f 0 respectively, where c denotes the speed of light

and f0 is the baseband radar frequency. The appropriate tar-
get reflectivity function is

a t;lð Þ ¼ Ae2pifttd l� ltð Þepiftle�2pif0lt ð27Þ

or equivalently

â f ; lð Þ ¼ Ad f � ftð Þd l� ltð Þepiftle�2pif0lt : ð28Þ

Plugging this into equation (23) shows how the discrete
model represents a point target:

hp;k ¼
Ag k=rb cþ1 pDf � ftð Þe�2pif0lt

0

k ¼ lt=tbb c
k ≠ lt=tbb c

:

(
ð29Þ

In order to look at sparsity, it will be easier to visualize the
absolute value of the reflectivity coefficients given by

hp; lt=tbb c
�� �� ¼ A

sinc nts pDf � ftð Þð Þ
sinc ts pDf � ftð Þð Þ

����
����: ð30Þ

Example point target reflectivity coefficients given by
equation (30) are shown in Figure 1. Notice that if pDf = ft
for some integer p, then all of the coefficients are zero except
for hp,⌊lt/tb⌋ and target sparsity translates directly into coef-
ficient sparsity. However, in general all of the frequency
coefficients corresponding to the correct range will be non-
zero, and the question then becomes one of degree: are
there few enough significant coefficients to say that they
are sparse? In practical terms, “significant” means being
above the noise level chosen for the compressed sensing

reconstruction since smaller values can be taken as zero
and the reconstruction error will still be acceptable.
[26] Figure 1 suggests one way of ensuring that the coef-

ficient sparsity emulates the reflectivity function sparsity for
point targets and by extension distributed targets: increasing
n, the number of frequencies included in the discrete model.
As n increases, the discretization effects become more
localized and the values n ⋅ hp,⌊lt/tb⌋ for the point target look
more like direct frequency samples from ĥ f ;ltð Þ. It is
important to note that this is the same problem and solution
encountered when relating the discrete Fourier transform of a
sampled function to the complete function’s Fourier trans-
form. So we conclude that in general with n large enough,
sparsity of ĥ f ;lð Þ translates directly to sparsity of hp,k.
[27] Before proceeding to implementing all of this theory,

we would be remiss to not point out the connection between
our discrete radar model and the matched filter. If one thinks
of the model as a linear operator that takes the reflectivity
coefficient matrix and produces a measurement vector, then
the adjoint operator is described by

xp;k ¼
Xm
q¼0

s∗rq�k�1e
�2pipq=nyq: ð31Þ

Taking r = 1 for the case when the signal is not under-
sampled, notice that the adjoint operator is exactly the dis-
crete matched filter for the sequence s applied at the
frequencies pDf. Applying the adjoint/matched filter to the
model itself yields

xp;k ¼
Xm�1

k′¼0

Xn�1

p′¼0

cs
p′;k ′ p; kð Þhp′;k ′ ; ð32Þ

Figure 1. Reflectivity coefficients representing a point target, given by equation (30) with A = 1 and ts = 1
ms as a function of frequency for six cases. The left column shows the values for a point target with Dopp-
ler frequency shift of 100 kHz, while the right column shows values for a Doppler shift of 150 kHz. The
first row shows the coefficient values when 10 frequencies are included in the discrete model, the second
row shows values for 25 frequencies, and the third row shows values for 50 frequencies. The dotted line in
each plot shows the underlying curve from which the coefficients are sampled.
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where cp′,k′
s (p, k) is the shifted time-frequency autocorrela-

tion function (or ambiguity function) of s:

cs
p′;k′ p; kð Þ ¼

Xm
q¼0

sq�k′�1s∗q�k�1e
�2pi p�p′ð Þq=n: ð33Þ

The output of the matched filter is a superposition of the
model’s reflectivity coefficients multiplied by the appropri-
ately shifted time-frequency autocorrelation function. Solv-
ing for the reflectivity coefficients is equivalent to inverting
the autocorrelation function to recover just the peak of the
matched filter. In other words, the reflectivity coefficients
describe the same result as the matched filter but with all
filtering sidelobes removed. Of course, this “matched” filter
is only matched for point targets at the discretization grid
points, and interpreting its results when applied to distrib-
uted targets entails a similar analysis to the one we just
presented for interpreting the reflectivity coefficients. The
takeaway is that the applicability of the discrete model to
real-world problems is exactly the same as the applicability
of the discrete matched filter in those situations.

5. Implementation

[28] With the sparsity and interpretation of the reflectivity
coefficients hp,k settled, we have all the theoretical tools we
need to apply the discrete radar model to real data using
compressed sensing. In order to actually accomplish this, we
employ a variation on the Dantzig selector called the Gauss-
Dantzig selector. An estimate is made with the Dantzig
selector

ĥ
d ¼ argmin

h∈Rn

hk k1
subject to A∗ Ah� yð Þ�� ��

∞ ≤ ls
ð34Þ

where h represents a vectorized form of the reflectivity
matrix H and A gives the linear measurements according to
the radar model. The locations of the non-zero components
are taken from this initial estimate and used to solve the
constrained least squares problem

ĥ
g ¼ argmin

h∈Rn
Ah� yk k2

subject to hk ¼ 0 ∀k such that ĥ
d

k ¼ 0
ð35Þ

where we have constrained the solution ĥ
g
to only allow

non-zero entries in the same locations as ĥ
d
. The effect of

this procedure is to maintain the compressed sensing per-
formance of the Dantzig selector, notably the sparse solution
and its robustness to noise, while achieving an unbiased
estimate of the non-zero components which the Dantzig
selector alone (biased toward zero) does not achieve.
[29] Because of the potentially large dimensions of these

convex optimization problems, with h having thousands of
elements or more, second-order solution methods are often
not feasible. Therefore, it is necessary to pursue first-order
gradient-based methods of optimization. Along with these
large dimensions comes a need for efficiently computing the
linear measurements represented by A. Simply taking the
model of equation (16) and converting it to matrix form as

y = Ah will not work very well; with a matrix of that size,
most computers will run out of memory very quickly.
Luckily, the linear operator in this case is highly structured,
and we can take advantage of this in the computations if
given the opportunity.
[30] As one might imagine, these problems are not unique

to our case, so general-use software packages for com-
pressed sensing and other large-scale optimization problems
are available. The one we have chosen to use is called
TFOCS (Templates for First-Order Conic Solvers) [Becker
et al., 2011a], and it was developed to solve problems of
the smoothed conic form described by Becker et al. [2011b].
Its benefits are that it is easy to specify the optimization
problem and it allows one to provide an efficient imple-
mentation of the linear operator A.
[31] The way we achieve this efficient implementation is

to break the operator of equation (16) into two steps:
applying the Doppler frequency shift and applying the time
delay and convolution with the transmitted signal. For the
first operation, we are referring to the calculation

gq;k ¼
Xn�1

p¼0

e 2pipq=nhp;k : ð36Þ

This is just an inverse discrete Fourier transform applied to
the columns of H and multiplied by a factor of n, so it is
readily implemented using the FFT (fast Fourier transform)
algorithm. For the second operation, we must implement the
function

yq ¼
Xrm�1

k¼0

srq�k�1 gq;k : ð37Þ

Although it might be tempting to try to take advantage of the
convolutional structure of this sum and once again use the
FFT algorithm, this would actually involve performing m
convolutions and discarding most of the resulting values
because the g term depends on q as well as k. Thus the
straightforward approach of performing the sum directly is
the correct approach. For both of these operations, one can
take advantage of sparse data structures to minimize memory
and computation even further. Though these observations
are trivial, the difference in computation time between using
this efficient implementation and using either a brute-force
sum or a giant matrix is certainly not trivial.
[32] One difficulty in using TFOCS is that it actually

solves a smoothed version of the optimization problem,
which is necessary because both the Dantzig selector and
constrained least squares problems are not differentiable
everywhere. Thus there is a need to select a value for the
smoothing parameter m which weights the smoothing term
of the minimization objective function. If m is too large, the
optimization converges to an incorrect value; if m is too
small, the optimization converges too slowly. Finding the
best value requires trial and error, although this may improve
in future versions of TFOCS. In our experience with the
examples to follow, letting

m ¼ A∗Ak k2
A∗yk k22

ð38Þ
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strikes the balance reasonably well in an automated fashion
for each individual measurement vector y.
[33] In total, our compressed sensing radar implementa-

tion proceeds as follows. Data is collected using a discrete
phase shift pulse waveform that results in sufficiently inco-
herent measurements, with baud length determining range
resolution and sampling rate setting the limit for feasible
reconstruction. Processing the data begins with choosing a
Doppler shift resolution with the goal of minimizing the
frequency step (maximizing n) while ensuring that enough
measurements have been collected with respect to the cho-
sen Doppler resolution to invoke the incoherent sampling
theorem and guarantee solution accuracy. Knowing the
dimensions of the problem, two linear functions are imple-
mented to efficiently calculate the measurements from the
reflectivity matrix according to our model. Then the loca-
tions of the non-zero entries of the reflectivity matrix are
found by using TFOCS to solve the Dantzig selector with
smoothing parameter m given by equation (38). The final
solution is reached by solving the sparsity-constrained least
squares problem that completes the Gauss-Dantzig selector.
The resulting reflectivity matrix is interpreted according to
equation (23) or equation (25) to tell us approximately how
much signal was returned by each corresponding window in
range-Doppler space.

6. Examples

[34] We apply our approach to meteor radar data collected
by HPLA systems. Our focus is on authentic data rather than

simulations because the latter have already been shown for
radar by Herman and Strohmer [2009]. The first example is
a particularly strong meteor head echo observed by the
Poker Flat Incoherent Scatter Radar (PFISR) on 28 July
2010. The measurements were made at 449.3 MHz using a
Barker-13 code with a baud length of 10 microseconds and a
sampling period of 5 microseconds. The inter-pulse period
was 51.75 ms. It should be stressed that these parameters are
not ideal for compressed sensing, as they were chosen with
matched filter processing in mind. Nevertheless, the Barker-
13 waveform is a discrete phase shift code as required by our
model, and it results in measurements that are sufficiently
incoherent. Depicted in Figure 2 is the SNR (signal-to-noise
ratio) of the meteor head as a function of range and pulse
time as given by the matched filter (Figure 2a) and com-
pressed sensing (Figure 2c). The compressed sensing solu-
tion also yields the SNR as a function of Doppler frequency;
this is shown in Figure 2d. In order to arrive at the matched
filter result, it is necessary to try multiple filters that have
each been frequency shifted by a different amount in order to
account for the Doppler shift of the returning signal. The
single matched filter result is the one that results in the
highest SNR out of all of the shifted filters. This maximum
SNR and the corresponding frequency shift are shown in
Figure 2b for comparison with the compressed sensing
result.
[35] The first thing to note about this example is that the

matched filter and compressed sensing results generally
agree, showing approximately the same SNR for the signal
at the same locations in range and Doppler frequency shift.

Figure 2. (a–d) Strong meteor head echo seen by PFISR. SNR is plotted as a function of pulse time and
range or Doppler frequency for both the matched filter and compressed sensing decodings.
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Although it is only one example, this gives us confidence
that our approach has merit and works on real data sets.
Perhaps the second most striking takeaway from these
results is the lack of range sidelobes in the compressed
sensing solution which are evident in the matched filter
solution in Figure 2a as a band of higher-than-noise points
centered around the SNR peak of each pulse. In this respect,
compressed sensing is competitive with other processing
approaches [Damtie et al., 2008; Lehtinen et al., 2009] used
to eliminate filtering sidelobes. The third important obser-
vation is that the compressed sensing solution associates an
independent Doppler frequency spectrum with each range,
whereas the matched filter is limited to one frequency
spectrum for the entire signal. If the reconstruction resolu-
tion is such that a single range- and Doppler-spread target
encompasses multiple range gates or Doppler samples, this
can tell us whether different portions of the target are moving
at different speeds, such as would be possible in a distributed
plasma or a multibodied hard target like a helicopter.
[36] Although it is only partially evident from Figures 2b

and 2d, the compressed sensing decoding for the head
echo describes signal returning from neighboring range
gates with the lower range associated with a Doppler shift
that is 1 kHz higher than the Doppler shift associated with

the higher range. We do not believe this to actually be true
for this head echo. Rather we believe that this puzzling
decoding results from assuming that the transmitted signal
had uniform power when in actuality it experiences drops in
power whenever the phase shifts according to the Barker-13
code. These power dips can be emulated in the return signal
with destructive interference caused by two targets, which is
what we see with the compressed sensing solution. Including
these assumed power drops in the code sequence causes the
compressed sensing solution to converge on a single target
occupying one range gate and Doppler shift. We find this
explanation more plausible than a fragmented meteoroid or
dense head echo plasma spread over more than 1.5 km in
range. Nevertheless, this example shows what the com-
pressed sensing results would be for either of the latter cases.
If transmission signal deviations could be eliminated, our
technique would provide a means for identifying fragmen-
tation and wide head echo events where a matched filter fails
to do so.
[37] Figure 3 shows our second example: matched filter

and compressed sensing decodings of a meteor head and
nonspecular trail detected by the Jicamarca incoherent scat-
ter radar on 1 March 2011. The measurements were collected

Figure 3. (a, b) Meteor head and nonspecular trail seen by the Jicamarca incoherent scatter radar. SNR is
plotted as a function of pulse time and range for the matched filter and compressed sensing decodings.
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at 49.92 MHz with a 51-baud minimum peak sidelobe code
and a baud length of 1 microsecond, sampling period of 1
microsecond, and inter-pulse period of 1.02 milliseconds.
Starting on the left side of both plots, we see that the head echo
is captured very cleanly in the compressed sensing solution
and agrees with the matched filter as before. Near the end of
the head echo is a flare, whereby a large density of plasma is
deposited at a particular range and remains visible for longer
than normal. The compressed sensing result provides some
insight by not agreeing with the matched filter at one point of
high SNR in the head echo where the flare occurs. This is
because the compressed sensing SNR plot is summed over all
frequencies, and at this point there is signal within the same
range gate coming from both the flare at zero Doppler shift and
the head echo at a positive Doppler shift. As the flare subsides,
a nonspecular trail forms and we have a target where the
compressed sensing approach begins to break down. Broadly
speaking, its SNR agrees with the matched filter SNR, but
the compressed sensing solution also exhibits many artifacts
that almost surely do not represent true signal. We believe that
two effects could contribute to these errors: sparsity bounds
on the discrete model’s representation of the trail may not be
achieved, and the smoothed optimization problem imple-
mented with TFOCS may not be converging to the minimum
l1-norm solution because of the decreased target sparsity
coupled with our selection of optimization parameters.

7. Conclusion

[38] Compressed sensing provides an exciting new
approach for processing radar signals and identifying targets.
The radar model that we derived provides insight into the
relationship between the compressed sensing solution and a
continuously defined target’s reflectivity and shows that
sparsity of the true target translates to sparsity in the model.
Our formulation is very similar to the previous models by
Herman and Strohmer [2009] and Bajwa et al. [2008] for
which compressed sensing has been explored theoretically,
lending mathematical support to our procedure. The concept
is also similar to the amplitude domain analysis of Vierinen
et al. [2008], but our solution provides a higher level of
automation that makes general application easier. The effi-
cient implementation that we developed for this procedure
allows its use on large data sets, which is an important step
to analyzing real-world data. From our two examples of
meteor head echoes and a nonspecular trail, we know that
the compressed sensing procedure can provide new insight
compared to matched filter techniques.
[39] Many of the benefits of compressed sensing are shared

by methods like mismatched or inversion filters [Lehtinen
et al., 2009; Damtie et al., 2008], lag profile inversion
[Virtanen et al., 2008], and scattering amplitude inversion
[Vierinen et al., 2008]. Compressed sensing is compelling
because it casts inversion in a new framework that places a
different constraint on the transmission signal (incoherence)
and provides convergence guarantees based on the degree of
sparsity, the coherence of the code, and the number of mea-
surements. Compared to the ubiquitous matched filter, our
method produces no filtering sidelobes, removes noise, and
has a high range and Doppler frequency resolution that is not
directly constrained by the sampling rate or pulse length.

Provided the target meets sparsity constraints, these features
make compressed sensing ideal for detailed imaging of dis-
tributed targets and identification of multiple targets that are
closely spaced in range and/or range rate. For meteor studies
with HPLA radars, these abilities are vital to elucidating the
complex processes present in the plasma.
[40] The approach described herein is a first step toward

getting interpretable radar results using compressed sensing
techniques. Continued application to measuring ionospheric
plasma, particularly meteors, will be the focus of our future
work. We intend to explore ways to improve the discrete
radar model so that it better encompasses the sparsity of
complex targets like nonspecular meteor trails. Avenues of
improvement include expressing the target in a different basis
(wavelets, discrete prolate spheroidal sequences), removing
the restriction to discrete bauded codes and allowing arbitrary
transmission envelopes, and incorporating the effects of pre-
sampling filters. We also intend to investigate relaxing the
sparsity requirement to cover either range or frequency so
that sensing a wider category of targets is possible. Even
though there is much work to be done, the future of radar
compressed sensing looks promising indeed.

[41] Acknowledgments. Ryan Volz was supported by the Department
of Defense (DoD) through the National Defense Science and Engineering
Graduate Fellowship (NDSEG) Program. This material is based upon work
supported by the National Science Foundation under grant AGS-1056042.
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