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Dynamic mesoscale flow structures move across the open field line regions of the
polar caps and then enter the nightside plasma sheet where they can cause
important space weather disturbances, such as streamers, substorms, and omega
bands. The polar cap structures have long durations (apparently at least ~1½ to
2 h), but their connections to disturbances have received little attention. Hence, it
will be important to uncover what causes these flow enhancement channels, how
they map to the magnetospheric and magnetosheath structures, and what
controls their propagation across the polar cap and their dynamic effects after
reaching the nightside auroral oval. The examples presented here use 630-nm
auroral and radar observations and indicate that themotion of flow channels could
be critical for determining when and where a particular disturbance within the
nightside auroral oval will be triggered, and this could be included for full
understanding of flow channel connections to disturbances. Also, it is
important to determine how polar cap flow channels lead to flow channels
within the auroral oval, i.e., the plasma sheet, and determine the conditions
along nightside oval/plasma sheet field lines that interact with an incoming
polar cap flow channel to cause a particular disturbance. It will also be
interesting to consider the generality of geomagnetic disturbances being
related to connections with incoming polar cap flow channels, including the
location, time, and type of disturbances, and whether the duration and expansion
of disturbances are related to flow channel duration and tomultiple flow channels.
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1 Introduction

Recent evidence indicates that the magnetosphere–ionosphere
system is frequently driven by dynamic mesoscale flow structures
(see Chapters in Nishimura et al., 2022, and references therein) that
are first observed near the dayside cusps, move across the open field
line regions of the polar caps, and then enter the plasma sheet, where
they lead to a number space weather disturbances (Lyons et al., 2016,
and references therein). It is important to uncover the features of
these channels of enhanced flow, i.e., their structure, how they
propagate across the polar cap, and what controls their dynamic
effects after reaching the nightside plasma sheet. On the dayside,
ionospheric flow channels emanate from regions of localized
reconnection along the open–closed field line boundary and are
associated with poleward moving auroral forms (PMAFs) that track
flow channels as they move poleward into the polar cap (e.g.,
Sandholt et al., 2002). The electron precipitation that produces
PMAFs leads to areas of high-density F-region plasma called
polar cap airglow patches that continue propagating poleward
after PMAF decay (Carlson et al., 2006; Lorentzen et al., 2010).
They continue to mark flow channels as they propagate across the
polar cap (Nishimura et al., 2014; Zou et al., 2015;Wang et al., 2016).
When they reach the nightside auroral oval, it is observed that the
flow channels in the polar cap lead to flow channels within the oval
(de la Beaujardière et al., 1994; Lyons et al., 2011; Pitkänen et al.,
2013), which form auroral poleward boundary intensifications
(PBIs) (Lorentzen et al., 2004; Nishimura et al., 2013; Zou et al.,
2014). However, the physics of the interaction of flow channels along
the nightside open–closed field line boundary remains to be
investigated, as well as does how many, and which, auroral oval
flow channels result from this interaction. Some PBIs subsequently
extend toward the equator as auroral streamers, indicating an
equatorward extension of the flow channels within the oval.
Auroral streamers and their associated flow channels represent a
common geomagnetic disturbance, and the observations of auroral
streamer indicate that some of these flow channels cause major
geomagnetic disturbances, such as substorms (Nishimura et al.,
2010) and dawnside omega bands (Henderson et al., 2002; Liu
et al., 2018).

Using simultaneous observations of the dayside, polar cap, and
nightside polar region by all-sky imagers (ASIs), SuperDARN
radars, and a Defense Meteorological Satellite Program (DMSP)
satellite, Nishimura et al. (2014) observed the nearly continuous
progression of a PMAF becoming a polar cap patch and then
propagating across the polar cap from the dayside auroral region
toward the nightside auroral oval. The patch was associated with a
narrow flow channel when it reached the nightside polar cap,
indicating that fast mesoscale flows initiating on the dayside
transported the enhanced plasma density over a limited longitude
range toward the nightside auroral oval. As the flow channel and
patch reached the nightside auroral poleward boundary, PBIs
developed. It is interesting to note that this flow channel was
tracked across the polar cap for ~90 min before it led to PBIs. A
similar traversal from the dayside to the nightside auroral oval
(taking ~110 min) was shown for polar cap patches by Zhang et al.
(2013), which, based on patches being carried by polar cap flow
channels, can be regarded as an observation of a similar traversal of a
flow channel from the dayside to the nightside plasma sheet.

If generally true, the concept that flow channels leading to major
space weather disturbances on the nightside propagate within the
polar cap before they lead to a disturbance would likely be critical for
deep understanding of the causes of space weather. Despite this
potential importance, the topic has received very less attention.
Nishimura & Lyons (2016) considered one possibility of how this
process might be driven. They showed that, based on an MHD
simulation of the response to an interplanetary magnetic field (IMF)
discontinuity, localized flow channels can propagate tailward across
the lobe and drive localized magnetotail reconnection when they
reach the outer boundary of the nightside plasma sheet and that the
cross-tail width of this reconnection and resulting plasma sheet flow
channels and dipolarization fronts are related to the width of the
inflow from the lobe. Certainly, this subject deserves much
additional attention. In the following sections, we put forward a
further aspect of this crucial coupling of polar cap flow channels to
space weather disturbances (to be included in further
considerations) and conclude with critical questions about polar
cap flow channels and the relation to space weather.

When observed on a large scale, polar cap convection varies
substantially from purely anti-sunward flow in response to the
y-component of the IMF (Mansurov, 1970; Stern, 1973;
Svalgaard, 1973; Reiff and Burch, 1985), giving a substantial
azimuthal component to flow within the nightside polar cap, that
is, from dawn to dusk (dusk-to-dawn) for IMF By > 0 (<0). Flow
channels are embedded in this large-scale convection and contribute
to total convection, an individual channel contributing ~10%–40%
of the cross-polar cap potential drop and having orientation that
tends to agree with that expected from the orientation of the IMF by
Zou et al. (2015). It is thus reasonable to consider that flow channels
also move across the polar cap with an azimuthal motion that
reflects this IMF by dependence. While there is not enough
capability to measure polar cap flow to directly detect the motion
of flow channels, the flows can be tracked with the red line (630 nm)
all-sky-imager (ASI) data (Carlson, 1990). This allows detecting the
weak emissions from polar-cap patches as well as detecting the weak
emissions (compared to auroral oval arcs) of polar cap arcs. In
addition to patches, whose motion traces that of flow channels (Zou
et al., 2015), polar cap arcs are located toward the edge of a localized
flow channel (Robinson et al., 1987; Valladares and Carlson, 1991;
Koustov et al., 2009) and thus, their azimuthal motion traces that of
flow channels. In the following sections, we show a by dependent
azimuthal motion of polar cap arcs and their associated flow
channels over nearly 2-h periods and that these flow channels
are the dominant driver of geomagnetic activity as observed by
auroral oval substorm activity and ground magnetic depressions.

2 2013 March 9; IMF By > 0 example

Figure 1 shows selected mosaics of images for 0704–0920 UT on
9 March 2013, from the 630-nm ASI at Resolute Bay (83° magnetic
latitude), which is part of the Optical Mesosphere Thermosphere
Imager (OMTI) network (Shiokawa et al., 1999) of 630-nm ASIs,
and the lower-latitude THEMIS while light ASIs covering North
America (Mende et al., 2008). Supplementary Movie S1 shows a
recording of the mosaics every 2 min over the full-time interval of
interest. The IMF By was mostly ~3–4 nT, and Bz varied between
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~ −2 and 1 nT. The 630-nm ASI observations show several narrow
optical forms extending toward the equator across the field-of-view
(FOV) from near the magnetic pole toward the nightside auroral
oval, which is observed primarily by the THEMIS ASIs. These
relatively diffuse emissions resemble polar cap patches, and five
of them are labeled as Patch 0–4 in the figure. These patches can be
seen to move from the dawnside to the duskside of the polar cap
during their anti-sunward motion, crossing magnetic midnight
(identified with a blue meridional line), with this duskward
motion across the polar cap being particularly clear in
Supplementary Movie S1.

Figure 1 and SupplementaryMovie S1 show that two-dimensional
flow vectors obtained from all available SuperDARN radar echoes
are overlaid on the mosaics, using the divergence-free condition
(Bristow et al., 2016; Bristow et al., 2022). Here, the divergence-
free flow pattern was obtained from the line-of-sight (LOS)
SuperDARN velocity adopted from the Spherical Elementary
Current Systems (SECS) (Amm et al., 2010) technique and gives a
divergence-free solution over a 1° latitude and 3° longitude grid. No
background statistical convection model was used to avoid the

influence of prescribed background flows and emphasize the
continuity of observed flow channels. Heavier arrows represent the
flow vectors obtained in regions of radar echoes, and thin arrows
represent the flows in regions without echoes. Since there is no
background convection model, the flows here are only meaningful
in and near regions of echoes, unlike in Bristow et al. (2016) and
Bristow et al. (2022). Regions of enhanced, approximately
equatorward, flow that we identify as flow channels associated
with one of the identified polar cap patches are roughly encircled
by white dashed curves.

These flow channels appear to substantially affect auroral
dynamics as they are swept from east to west across the
nightside. As Patch 0 is swept by from east to west, the flow
channel associated with Patch 0 moves toward the equatorward
boundary of the auroral oval at 0708 UT (relative to what was seen at
0704 and 0706 UT). This is the time of an east–west aligned auroral
arc brightening near the equatorward boundary of the auroral oval,
which we identify as a substorm onset. As can be seen in the
0720 UT panel, the substorm auroral brightening then expanded
poleward and azimuthally after onset. Such flows leading to onsets

FIGURE 1
Selected mosaics of images for 0704–0920 UT on 9 March 2013 from the REGO 630 nm ASI at Resolute Bay (83° magnetic latitude) and the lower-
latitude THEMIS while light ASIs cover North America. Supplementary Movie S1 shows a movie of the mosaics every 2 min over the full-time interval of
interest. Overlaid on themosaics are two-dimensional flow vectors obtained from all available SuperDARN radar echoes as described in the text. The IMF
as measured by the closest available monitor, ARTEMIS B, and ground magnetometer measurements in the vicinity of the auroral disturbance are
shown along the right side of the figure.
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and their azimuthal expansion have been previously identified using
the Bristow et al. (2016) two-dimensional flows (Lyons et al., 2022).
Flows to the onset decreased as Patch 0 moved further westward,
and further expansion was temporarily reduced, as seen in the
0734 UT panel. However, soon thereafter, Patch 1 moved
westward to the longitude of the expansion-phase auroral bulge,
and the flow channel with this patch impinged on the bulge as seen
in the 0738 UT panel and Supplementary Movie S1 from 0736 to
0756 UT, leading to further poleward and azimuthal expansion of
the expansion phase bulge. This is only a modest substormwith peak
magnetic northward N component magnetic depression of ~100 nT
as seen in the SMI and RAL magnetograms in the lower right
portion of Figure 1, the peak detected depression being ~150 nT at
FCC (not included in Figure 2). A further intensification of this
auroral bulge occurred, as seen in the 0816 UT panel, as Patch 2 and
its associated flow reached the longitude of the bulge. It is interesting
to note that a direct connection can be seen between Patch 2 and the
bulge in the 630-nm images from ~0812 to 0826 UT as Patch 2 swept
westward across the bulge. Flows to the bulge decreased as Patch
2 swept westward, and expansion-phase auroral activity decreased.

With the occurrence of the aforementioned activity, Patches
3 and 4 moved westward from the dawnside edge of the 630-nm
FOV. The flow channel associated with these patches first becomes
clear at 0806 UT in the movie and is identified as Flow 3 in the

0816 UT panel of Figure 1. Its equatorward edge is initially seen
above 75° latitude and then gradually moved equatorward. As it
moved equatorward, an arc appearing along the oval poleward
boundary, that is, first visible in Supplementary Movie S1 at
0830 UT was pushed equatorward until it reached very near the
equatorward boundary of the auroral oval and to an arc brightening
that demarcates an onset at 0854 UT. As flow channel 3 continued to
flow into the onset region, a major substorm poleward and
azimuthal expansion can be identified at 0904 UT, leading to
magnetic depressions of 300 nT. Visible polar cap patches and
flow channels decreased by 0920 UT, auroral activity decreased,
and the stronger magnetic depressions at FSP and SMI decreased.

We have three polar-orbiting DMSP passes over the polar caps
during this event (Supplementary File S2), two over the southern
hemisphere, and one over the northern hemisphere. Auroral images
taken from horizon-to-horizon scans in the direction normal to the
spacecraft trajectory from the two southern hemisphere passes are
shown in the lower panels (DMSP 16 and 17). The images show the
main auroral oval, but are not sufficiently sensitive to show the polar
cap patches. As expected for IMF By > 0, anti-sunward convection
(second panel) is much stronger on the dusk/dawnside in the
southern/northern hemisphere (DMSP 16,17/15) of the polar cap
region (MLAT >73°) because of the anti-sunward flow. It is of
particular interest that, as indicated by shadings in the figure,

FIGURE 2
Selected mosaics of images for 0518–0614 UT on 13 November 2010 as in Figure 1. Supplementary Movie S3 shows a movie of the mosaics every
2 min over the full-time interval of interest displaying more of the THEMIS ASI imagers FOVs than in Figure 2. Overlaid on the mosaics are LOS flows
obtained from all available SuperDARN radar echoes. Images with two-dimensional flows are shown in the column to the right of the images with LOS
flows for times when the two-dimensional flow was of sufficient quality to discern a flow channel and its relation to a polar cap arc. The IMF from
NASA OMNIWeb and ground magnetometer measurements in the vicinity of the auroral disturbance are shown along the right side of the figure.
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considerable structure appears in the region of strong anti-sunward
flows. The localized enhanced anti-sunward flows are likely
responsible for carrying polar cap patches from the dayside
toward the nightside, and the related structuring of the cross-
track magnetic field (top panels) likely reflects associated
magnetic field aligned currents.

3 2010 November 13; IMF By <
0 example

Figure 2 shows selected mosaics of images for 0518–0614 UT on
2010 November 13 as in Figure 1. Supplementary Movie S3 shows a
recording of the mosaics every 2 min over the full-time interval of
interest, displaying more of the THEMIS ASI imagers FOVs than in
Figure 2. The red line ASIs at latitudes below the Resolute Bay ASI
are from the Red-line Emission Geospace Observatory (REGO)
(Gillies et al., 2017) (https://www.ucalgary.ca/aurora/projects/
rego) ASIs at Rankin Inlet and Taloyoak. Overlaid on the
mosaics in Figure 2 and Supplementary Movie S3 are the line-of-
sight (LOS) flow obtained from all available SuperDARN radar
echoes. Images with two-dimensional flows are shown in the column
to the right of the images with LOS flows for times when the two-
dimensional flow was of sufficient quality to discern a flow channel
and its relation to a polar cap arc. The IMF By was mostly
~ −3 to −4 nT, and Bz varied between ~ −1 and 1 nT. As can be
seen in Figure 2 and Supplementary Movie S3, polar cap arcs sweep
from west to east in this case, as expected from the northern
hemisphere flow pattern for By < 0.

Three polar cap arcs are identified in the first (0518 UT) panel.
The eastern-most arc (arc 1) moved eastward and then slowly
disappeared. The next arc to the west, arc 2, also moved
eastward and extended equatorward toward the auroral oval. The
LOS and vector flows in the 0634 UT panels indicate a flow channel
adjacent to arc 2. As this arc extended equatorward, it (more
accurately, the associated flow channel) led to an auroral onset
near its point of contact with the auroral oval, as can be seen at
0600 UT in Supplementary Movie S3 and identified in the 0602 UT
panel of Figure 2. Limited expansion of auroral activity was observed
after this onset and continued until ~0630 UT. This is identified in
the 0624 UT panel of Figure 2 and seen more clearly in the THEMIS
ASI images in the movie, where more of the THEMIS ASIs’ FOVs
are displayed at lower oval latitudes than that shown in Figure 2. Due
to the limited poleward expansion and weak ground magnetic
perturbations, this onset would generally be called a pseudo-
breakup.

Arc 3 is traced moving westward and extending equatorward as
shown in Figure 2 for nearly 1½ hours, and a flow channel was seen
adjacent to the arc starting at 0546 UT when the arc approached the
region of SuperDARN radar echoes. It is of particular interest that,
as the arc extended equatorward toward the auroral oval, its
equatorward portion bent strongly toward the west, as can be
seen in the images in Figure 2 and Supplementary Movie S3
starting at 0600 UT. The equatorward-most portion of the arc
became almost parallel to the oval, and as this approximately
east–west aligned segment of the arc moved equatorward and
contacted the auroral oval, it (more accurately, the associated
flow channel) leads to an onset at 0644 UT that extended over

serval hours in MLT, and the bulge auroral activity subsequently
expanded poleward by several degrees in latitude. The ground
magnetic perturbations with this substorm were moderate,
peaking a little over 100 nT.

4 Perspective

We argue here that understanding of flow channels as they
propagate across the polar cap and reach the nightside auroral oval
should be a critical goal to understand what controls space weather.
The limited examples published previously, and the two examples
presented here, indicate that these flow channels move within the
polar cap for at least 1½–2 h before they impact the nightside oval
and lead to dominant geomagnetic disturbances, in particular PBIs,
streamers, substorm, and omega bands. Tracking of flow channels
within the polar cap can be carried out with radars, density and
optical signatures of polar cap patches, and observations of polar cap
arcs, which can be seen in 630-nm emissions from ground-based
ASIs. The examples presented here suggest that, as the flow channels
propagated anti-sunward within the polar cap, their azimuthal
motion may be significantly controlled by the IMF By-dependent
large-scale convection, and this motion could be critical for
determining when and where a particular disturbance will be
triggered. Critical questions about polar cap flow channels and
the relation to space weather include the following:

1. What controls the propagation of flow channels within the polar
cap and when and how do enhanced flows extend across, or
move across, the polar cap and reach the nightside auroral oval
boundary? This includes what conditions control the mapping
of structures from the magnetosheath andmagnetosphere to the
polar cap ionosphere and what controls the mapping spatial and
time scales.

2. When and how does localized reconnection occur and bring
enhanced flow channels, and lobe and polar cap ionospheric
plasma, into the auroral oval/plasma sheet?

3. How many, and which, auroral oval flow channels result from
the impact of polar cap flow channels on the poleward boundary
of the auroral oval?

4. What is the role of new plasma brought into the plasma sheet
from the polar caps by the localized reconnection at the polar
cap boundary?

5. Under what conditions do the flow channels propagate a
significant distance equatorward/earthward within the oval/
plasma sheet?

6. Under what conditions do flow channels from the polar cap lead
to disturbances such as substorms, streamers, and dawnside
omega bands?

7. How is the azimuthal motion of flow channels related to the
time and location of disturbances, including the driving of
multiple disturbances by the same flow channel?

8. How do the conditions for leading to a disturbance depend
upon the evolution of plasma sheet conditions while a flow
channel moves within the polar cap? Although we do not have
statistics on polar cap flow propagation times, the time scale for
flow channels within the polar cap appears to be much longer
than for conditions to change within the nightside plasma sheet.
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For example, the growth phase of substorm is typically much
less than an hour.

9. All the disturbances during the two time intervals considered
here are related to incoming polar cap flow channels. How
general is this relationship?

10. What is the role of the duration of a polar cap flow channel, and
multiple flow channels, in the temporal and spatial evolution of
disturbances?
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