
1. Introduction
Ionospheric plasma convection is largely driven by the electrodynamic processes in the magnetosphere, which 
is controlled by the interaction between magnetosphere and solar wind. Thus, ion convection is a key indicator 
of the ionospheric responses to geomagnetic variations. Ion motion can enhance, recede, and even reverse in 
reacting to different interplanetary magnetic field (IMF) and solar wind conditions. During disturbed periods, 
enhanced ion convection transports midlatitude plasma into the polar cap, leading to tongues of ionization and 
patches, which can disrupt communication and navigation in the polar region (Buchau et al., 1983; Nishimura 
et al., 2021; Weber et al., 1984). The radio backscatter technique has been widely used to measure ion motions. 
For instance, the Super Dual Auroral Radar Network (SuperDARN) scans over azimuth sectors on a regular basis 
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(typically 2 min) and measures line-of-sight (LOS) ion drifts therein. The LOS ion drift measurements provide 
ion convection information over high-latitude and midlatitude regions. When different radars receive signals from 
different directions at the same location, the vector ion drift at that location can be directly retrieved (Bristow 
et al., 2016; Hanuise et al., 1993). However, due to the limited coverage of SuperDARN radars, the rate of over-
lapping field of view is relatively low; thus, the direct derivation of vector drifts from the LOS measurements is 
limited (Bristow et al., 1995; Sánchez et al., 1996).

The retrieval of the global convection pattern from LOS measurements using other techniques has long been 
investigated. Best-known techniques include SuperDARN spherical harmonic fitting (SHF) (Ruohoniemi & Bak-
er, 1998) and assimilative mapping of ionospheric electrodynamics (AMIE, Richmond & Kamide, 1988). Super-
DARN SHF derives vector ion drifts by minimizing the weighted squared errors between the LOS ion drifts and 
spherical harmonic expansions, and the fitted patterns are widely used in both quiet- and storm-time studies (e.g., 
Maimaiti et al., 2018; Zhang et al., 2020). AMIE uses spherical cap harmonics as the basis function to fit the 
LOS ion drifts and provides more realistic high-latitude electric fields in the storm time than the empirical models 
(Hsu et al., 2021; Lu et al., 2020; Richmond, 1992). Both methods use a known background model to provide 
constraints in the fitting process. The degree of the fitting precision, also referred to as “resolution,” is controlled 
by the order of basis functions, which describes the number of harmonics along the longitudinal circle. For both 
methods, the background model is weighted where no observations are available. For higher orders, more model 
points are sampled so the patterns are more heavily weighted by the background model (Bristow et al., 2016). 
Thus, for those methods using global basis functions (e.g., spherical harmonics and spherical cap harmonics), the 
fitting is constrained by limiting the sampling of the background model; thus, the fitting resolution cannot be too 
high. A typical choice is on the order of 10° in longitude and 2° in latitude (Lu, 2017; Matsuo, 2020).

Nevertheless, the magnetosphere-ionosphere-thermosphere coupled system embraces a variety of important me-
dium- to small-scale electrodynamic processes, which are below the resolution resolvable by the SuperDARN 
SHF or AMIE methods. The electric fields at polar cap and auroral region exhibit cross-scale power spectra 
all the way from planetary scales down to 0.5 km (Golovchanskaya & Kozelov, 2010a; Kozelov & Golovchan-
skaya, 2006), which lead to the deviation from the global large-scale two-cell ion convection pattern (Cousins & 
Shepherd, 2012a, 2012b). Small-scale electric fields have been often observed and found to impact the energy 
budget during magnetic storms (Codrescu et al., 1995; Cosgrove & Codrescu, 2009). Wu et al. (2020) found that 
an accurate specification of the local electric fields varying in short temporal scales and satellite-observed auro-
ras showing small-scale spatial variations is essential to reproduce the observed local temperature enhancement 
(∼500 K) and inversion layer in the E-region (∼130 km). Sheng et al.  (2020) found that using ground-based 
auroral imager observations characterized by mesoscale features better resolves the large-scale traveling atmos-
pheric disturbances than using the empirical auroral maps. These studies illustrate that a better quantification of 
energy inputs fusing data information with regional scales significantly improves the simulation of ionospheric/
thermospheric responses to geomagnetic storms.

To better use the LOS ion drift measurements, which are typically of 1° (e.g., SuperDARN), several different 
methods have been proposed to accommodate the high-resolution data. For example, Amm et al. (2010) used 
spherical elementary current system (SECS) as the basis functions and solved the coefficients of SECS using 
the divergence-free condition of ion drifts. This method does not rely on “a priori” information provided by 
background models. Bristow et al. (2016) proposed a local divergence-free fitting technique, which also relies 
on the divergence-free assumption of ion drifts. The relation between the vector field and its LOS component 
is imposed as an additional constraint of the system from which the vector ion drift is derived during the fitting 
process. Large-scale SHF results are imposed as boundary constraints and additionally as “a priori” knowledge to 
the framework. Both methods produce vector ion drifts at higher resolutions than the typical global basis function 
fitting technique.

Here, we propose an alternative method of retrieving vector ion drifts or equivalently electric fields, out of 
the LOS measurements using a multi-resolution Gaussian process model also called Lattice Kriging (Nychka 
et al., 2015). This methodology has been used to analyze surface temperatures and make the prediction at regions 
without observations (Heaton et al., 2019; Wiens et al., 2020). However, the previous applications of the Lattice 
Kriging method are largely limited to the assimilation of scalar fields. In this paper, we develop an extension of 
this methodology and apply it for the assimilation of vector fields, that is, electric fields in our case. Such exten-
sion assumes that the high-latitude electric field is curl-free (equivalent to the divergence-free constraint of ion 
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drifts). Using LOS information of electric fields and certain background models, the electric potential can be re-
trieved over the whole domain. By adjusting the sparseness/fineness of the basis functions in multiple levels, the 
model can be used to study the multi-resolution structures of the electric field. Our testing results show that the 
fitted results are in accordance with the inputs both locally and over the high-latitude region where SuperDARN 
observations are available. The method reduces the error of LOS electric fields, and the improvement is more 
significant when a set of higher resolution basis function is used.

The mathematical formulation is presented in Section 2, including a synthetic test to verify the formulation. Then, 
we apply this method to real observations (i.e., SuperDARN and Poker Flat Incoherent Scatter Radar (PFISR)) to 
explore its applicational performance (Section 3). Conclusions are given in Section 4.

2. Methodology
2.1. Fundamental Formulation of Lattice Kriging for Data Assimilation

The original formulation of Lattice Kriging was proposed in Nychka et al. (2015). Suppose there are n observa-
tions, an observation yi (1 ≤ i ≤ n) made at location xi is separated into a statistical mean μi and a deviation g(xi) 
plus an error term ϵi

𝑦𝑦𝑖𝑖 = 𝜇𝜇𝑖𝑖 + 𝑔𝑔(𝑥𝑥𝑖𝑖) + 𝜖𝜖𝑖𝑖 (1)

Both observation yi and deviation g(xi) are taken as Gaussian processes. μi provides a prior knowledge of the 
statistical characteristics of the field and serves as a background (starting point) for data assimilation. In space 
physics, μi is usually taken as an empirical model Zi(a) such as the Weimer model (Weimer, 2005) in which a 
contains the inputs of the model (e.g., solar wind parameters and IMF). Since we take the results from the empir-
ical models directly as our inputs, the dependence of Zi on a is treated by the empirical models and not relevant 
to our procedures. Therefore, Zi(a) is simplified as Zi throughout this paper. For our application, we consider the 
systematic bias of the empirical model compared to observations and assign a linear scaling factor d to be multi-
plied by the empirical model when taken as statistical mean, so

𝜇𝜇𝑖𝑖 = 𝑍𝑍𝑖𝑖𝑑𝑑 (2)

Then, the only input parameter to be estimated when we apply the empirical model is the scaling factor d.

The formulation of Lattice Kriging assumes that g(x), the value of the deviation field at a certain location x, can 
be decomposed into a set of basis functions Rj(x) (1 ≤ j ≤ m, the total number of basis functions is m),

𝑔𝑔(𝑥𝑥) =
𝑚𝑚
∑

𝑗𝑗=1
𝑐𝑐𝑗𝑗𝑅𝑅𝑗𝑗(𝑥𝑥) (3)

where cj is the coefficient of the jth basis function. Being a Gaussian process, the covariance function of g(x), 
describing the spatial correlation of any two locations (x and x’), can be written as a second-order term of R(x),

cov(𝑔𝑔(𝑥𝑥), 𝑔𝑔(𝑥𝑥′)) =
∑

1 ≤ 𝑗𝑗 ≤ 𝑚𝑚

1 ≤ 𝑗𝑗′ ≤ 𝑚𝑚

𝑅𝑅𝑗𝑗(𝑥𝑥)𝑸𝑸−1
𝑗𝑗,𝑗𝑗′𝑅𝑅𝑗𝑗′ (𝑥𝑥′)

 (4)

where j and j’ are indices of two basis functions and Q−1 is the covariance matrix in the representation of Rj(x). 
Nychka et al. (2015) choose the basis function Rj(x) as the radial basis function (RBF), and the detailed formula-
tion of Q−1 can be found in Sections 2.4 and 2.5 of the paper.

Now, we write the basis functions into an n × m matrix R with its elements satisfying

𝑅𝑅𝑖𝑖𝑖𝑖𝑖 = 𝑅𝑅𝑖𝑖(𝑥𝑥𝑖𝑖) (5)

which is the evaluation of the jth basis function at the observation location of xi. Note that the total number of 
basis functions is m and the total number of observational points is n. Then, expanding Equations 3 and 4 to all n 
observational points leads to their corresponding matrix forms as follows:
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𝑔𝑔(𝒙𝒙) = 𝑹𝑹𝑹𝑹 (6)

cov(𝑔𝑔(𝒙𝒙), 𝑔𝑔(𝒙𝒙′)) = 𝑹𝑹𝑹𝑹−1𝑹𝑹𝑇𝑇 (7)

where x = (x1, x2, … xn) and c = (c1, c2, … cm). The error covariance matrix W−1 is assumed to be diagonal

𝑾𝑾 −1 = diag(𝝐𝝐) (8)

where ϵ = (ϵ1, ϵ2, … ϵn). Stacking all observations yi into a vector y = (y1, y2, … yn) and all empirical model out-
puts Z = (Z1, Z2, … Zn), then the matrix form of Equation 1 can be written as

𝒚𝒚 = 𝒁𝒁𝑑𝑑 +𝑹𝑹𝑹𝑹 + 𝝐𝝐 (9)

y satisfies a multi-variate normal (MVN) distribution with a mean of Zd and a standard deviation of RQ−1RT + W−1

𝒚𝒚 ∼ MVN(𝒁𝒁𝑑𝑑𝑑𝑹𝑹𝑹𝑹−1𝑹𝑹T +𝑾𝑾 −1) (10)

where y is an n × 1 vector, Z is an n × 1 matrix, d is a scalar, R is an n × m matrix, c is an m × 1 vector, Q is an 
m × m matrix, ϵ is an n × 1 vector, and W is an n × n matrix. According to the general Gaussian process theory, 
the best linear unbiased predictions (BLUPs) of the scaling factor d and the coefficients of basis functions c are 
(Cressie, 1993)

𝑑𝑑 = (𝒁𝒁T(𝑹𝑹𝑹𝑹−1𝑹𝑹T +𝑾𝑾 −1)𝒁𝒁)−1𝒁𝒁T(𝑹𝑹𝑹𝑹−1𝑹𝑹T +𝑾𝑾 −1)𝒚𝒚 (11)

�̂�𝒄 = 𝑸𝑸−1𝑹𝑹T(𝑹𝑹𝑸𝑸−1𝑹𝑹T +𝑾𝑾 −1)(𝒚𝒚 −𝒁𝒁𝑑𝑑) (12)

where y is the vector of the observed values. Then, the reconstruction of the field at all locations is symbolically 
written as

𝒚𝒚′ = 𝒁𝒁 ′𝑑𝑑 +𝑹𝑹′�̂�𝒄 (13)

The primes on y′, Z′, and R′ indicate that the reconstructed field may be taken at different locations from the 
observations. Note that in Nychka et al. (2015), R and Q are specified as sparse matrices; therefore, the whole 
calculation can be largely accelerated through sparse matrix calculation, which makes it ideal in processing large 
data sets. The specific form of RBF used in this study is

𝑅𝑅(𝑠𝑠) =

⎧

⎪

⎨

⎪

⎩

(1 − 𝑠𝑠)6(35𝑠𝑠2 + 18𝑠𝑠 + 3)∕3, for 0 ≤ 𝑠𝑠 𝑠 1

0, otherwise
 (14)

where s is the normalized distance between observations and basis functions. Even though Nychka et al. (2015) 
use RBF as the basis function, the choices of basis functions are flexible as far as the function is range limited, 
which enables localized fitting. The basis functions can be easily modified to accommodate for applicational 
needs.

2.2. Extension of Lattice Kriging to Assimilate Electric Fields

A straightforward approach for vector field modeling is to perform data assimilation separately for its compo-
nents. However, for electric fields, as mentioned earlier, the measurements are only LOS components, so such 
independent fitting is not feasible. Therefore, to derive the electric field from its LOS component, an additional 
equation that relates the two orthogonal components of the vector must be used as a constraint. For electric fields, 
we can use the curl-free condition, which is a reasonable approximation in the ionosphere-thermosphere system 
(Eccles, 1998; Mayr & Harris, 1978)

𝜕𝜕𝜕𝜕𝑦𝑦

𝜕𝜕𝜕𝜕
= 𝜕𝜕𝜕𝜕𝜕𝜕

𝜕𝜕𝑦𝑦 (15)
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This differential equation indicates that these two variables are not independent. Using this relation, only one 
unknown parameter needs to be derived despite the electric field has two components. By using this relation and 
projecting the vector electrical fields to the LOS direction along which the LOS drifts have measurements, the 
retrieval of Ex and Ey is possible and described as follows.

With the curl-free condition for electric fields, a common practice is to define a scalar potential ϕ satisfying

𝑬𝑬 = −∇𝜙𝜙 (16)

Then, the curl-free condition is automatically satisfied.

Since electric fields and electric potentials are related by partial derivatives, a natural choice to obtain the basis 
functions of electric fields is by taking the directional derivatives of potential fields. We choose the basis function 
of the potential field ϕ to be the RBF R(x) following Nychka et al. (2015). We further define two functions Rx(x) 
and Ry(x), which are related to R(x) by

𝑅𝑅𝑥𝑥(𝒙𝒙) = −
𝜕𝜕𝑅𝑅(𝒙𝒙)
𝜕𝜕𝑥𝑥

 (17)

𝑅𝑅𝑦𝑦(𝒙𝒙) = −
𝜕𝜕𝑅𝑅(𝒙𝒙)
𝜕𝜕𝑦𝑦 (18)

Therefore, if the potential field is decomposed onto a set of Rj(x) with coefficients cj satisfying, then

𝜙𝜙(𝒙𝒙) =
𝑚𝑚
∑

𝑗𝑗=1
𝑐𝑐𝑗𝑗𝑅𝑅𝑗𝑗(𝒙𝒙) (19)

Then, the components of the electric fields will follow the relation

𝐸𝐸𝑥𝑥(𝒙𝒙) = −
𝜕𝜕𝜕𝜕(𝒙𝒙)
𝜕𝜕𝑥𝑥

= −
𝑚𝑚
∑

𝑗𝑗=1
𝑐𝑐𝑗𝑗
𝜕𝜕𝜕𝜕𝑗𝑗(𝒙𝒙)
𝜕𝜕𝑥𝑥

=
𝑚𝑚
∑

𝑗𝑗=1
𝑐𝑐𝑗𝑗𝜕𝜕𝑥𝑥𝑥𝑗𝑗(𝒙𝒙) (20)

𝐸𝐸𝑦𝑦(𝒙𝒙) = −
𝜕𝜕𝜕𝜕(𝒙𝒙)
𝜕𝜕𝑦𝑦

= −
𝑚𝑚
∑

𝑗𝑗=1
𝑐𝑐𝑗𝑗
𝜕𝜕𝜕𝜕𝑗𝑗(𝒙𝒙)
𝜕𝜕𝑦𝑦

=
𝑚𝑚
∑

𝑗𝑗=1
𝑐𝑐𝑗𝑗𝜕𝜕𝑦𝑦𝑦𝑗𝑗(𝒙𝒙) (21)

This suggests that Rx(x) and Ry(x) are basis functions of Ex(x) and Ey(x), respectively. Equations 20 and 21 can 
be rewritten into a vector form as

𝑬𝑬(𝒙𝒙) = −∇𝜙𝜙(𝒙𝒙) = −
𝑚𝑚
∑

𝑗𝑗=1
𝑐𝑐𝑗𝑗∇𝑅𝑅𝑗𝑗(𝒙𝒙) (22)

To further relate the electric field E(x) with its LOS component, we project every electric field observation onto 
its corresponding LOS direction k(xi)

𝐸𝐸LOS(𝒙𝒙𝑖𝑖) = 𝑬𝑬(𝒙𝒙𝑖𝑖) ⋅ 𝒌𝒌(𝒙𝒙𝑖𝑖) = −
𝑚𝑚
∑

𝑗𝑗=1
𝑐𝑐𝑗𝑗∇𝑅𝑅𝑗𝑗(𝒙𝒙𝑖𝑖) ⋅ 𝒌𝒌(𝒙𝒙𝑖𝑖) =

𝑚𝑚
∑

𝑗𝑗=1
𝑐𝑐𝑗𝑗(−∇𝑅𝑅𝑗𝑗(𝒙𝒙𝑖𝑖) ⋅ 𝒌𝒌(𝒙𝒙𝑖𝑖)) (23)

This is equivalent to defining a new set of observation-dependent basis functions

𝑅𝑅LOS,𝑗𝑗(𝒙𝒙𝑖𝑖) = −∇𝑅𝑅𝑗𝑗(𝒙𝒙𝑖𝑖) ⋅ 𝒌𝒌(𝒙𝒙𝑖𝑖) (24)

and projecting the LOS electric field onto the new basis set

𝐸𝐸LOS(𝒙𝒙𝑖𝑖) =
𝑚𝑚
∑

𝑗𝑗=1
𝑐𝑐𝑗𝑗𝑅𝑅LOS,𝑗𝑗(𝒙𝒙𝑖𝑖) (25)

The Gaussian process model for LOS electric field then becomes

𝒚𝒚LOS = 𝒁𝒁LOS𝑑𝑑 +𝑹𝑹LOS𝒄𝒄 + 𝜖𝜖LOS (26)
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ZLOS is the projection of background model values onto the LOS direction. ϵLOS is the measurement error of the 
LOS electric field. After obtaining the BLUPs of 𝐴𝐴 d̂ and ĉ using the observations of LOS electric fields (yLOS), the 
potential field can be reconstructed using Equation 13.

In summary, we reduce the electric field (vector) modeling problem into the fitting of its LOS component (sca-
lar) assuming the curl-free condition and use the fitting information of 𝐴𝐴 d̂ and ĉ from the LOS measurements to 
simulate electric potentials for all locations over the domain. This approach is a simplified formulation of Fan 
et al. (2018), which uses Helmholtz-Hodge decomposition to study a broader range of vector fields on a sphere.

2.3. Validation Test Using Synthetic Inputs

The validation of electric field Lattice Kriging is performed using an artificial two-cell potential map with an 
arbitrary statistical background model in a two-dimensional (2D) plane. The test domain is −4 < x < 4 and 
−2 < y < 2. In order to apply Equation 26 to estimate the BLUPs of 𝐴𝐴 d̂ and ĉ, we need to input yLOS (LOS electric 
fields), ZLOS (LOS projection of the background model), and ϵLOS.

yLOS is obtained from a reference potential ϕ, which is a combination of two cells with equal magnitudes centered 
symmetrically around origin

𝜙𝜙(𝑥𝑥𝑥 𝑥𝑥) = 1
1 + (𝑥𝑥 − 1)2 + 𝑥𝑥2

− 1
1 + (𝑥𝑥 + 1)2 + 𝑥𝑥2 (27)

Then, the two electric field components are

��(�, �) = −
��(�, �)

��
= 2

(

� − 1

[1 + (� − 1)2 + �2]2
− � + 1

[1 + (� + 1)2 + �2]2

)

 (28)

��(�, �) = −
��(�, �)

��
= 2

(

�

[1 + (� − 1)2 + �2]2
−

�

[1 + (� + 1)2 + �2]2

)

 (29)

The locations of inputs into the fitting model are taken randomly within the whole test domain. The azimuth angle 
θi at each location is also randomly chosen from 0 to 2π. Then, the LOS direction is

𝒌𝒌(𝑥𝑥𝑖𝑖, 𝑦𝑦𝑖𝑖) = 𝒆𝒆𝑥𝑥cos𝜃𝜃𝑖𝑖 + 𝒆𝒆𝑦𝑦sin𝜃𝜃𝑖𝑖 (30)

The projection of the electric field on the LOS direction is

𝐸𝐸LOS(𝑥𝑥𝑖𝑖, 𝑦𝑦𝑖𝑖) = 𝑬𝑬(𝑥𝑥𝑖𝑖, 𝑦𝑦𝑖𝑖) ⋅ 𝒌𝒌(𝑥𝑥𝑖𝑖, 𝑦𝑦𝑖𝑖) (31)

Such LOS electric fields are then fed into the model as yLOS. In real applications, these chosen LOS electric fields 
correspond to the spatially scattered LOS observations. All error terms (ϵLOS) are taken as identity for simplicity.

In this validation test, the background potential model is taken as a linear function in the x direction

𝑍𝑍𝜙𝜙(𝑥𝑥𝑥 𝑥𝑥) = 𝑥𝑥 (32)

Then, the background LOS electric field model (ZLOS) is

𝑍𝑍LOS(𝑥𝑥𝑖𝑖, 𝑦𝑦𝑖𝑖) = −∇𝑍𝑍𝜙𝜙(𝑥𝑥𝑖𝑖, 𝑦𝑦𝑖𝑖) ⋅ 𝒌𝒌(𝑥𝑥𝑖𝑖, 𝑦𝑦𝑖𝑖) = −𝒆𝒆𝑥𝑥 ⋅ (𝒆𝒆𝑥𝑥cos𝜃𝜃𝑖𝑖 + 𝒆𝒆𝑦𝑦sin𝜃𝜃𝑖𝑖) = −cos𝜃𝜃𝑖𝑖 (33)

Following Equation 26, we obtain the BLUPs of the model parameters 𝐴𝐴 d̂ and ĉ, then we simulate potential over 
the whole domain out of the obtained 𝐴𝐴 d̂ and ĉ using Equation 13. The simulated potential ϕ′ is then compared 
with the reference potential ϕ (Figure 1).

Figure 1a shows the reference potential field over the whole domain. Figure 1b shows LOS electric fields chosen 
for the model fitting. The background potential model is shown in Figure 1c. The fitted potential is depicted in 
Figure 1d, with its uncertainty/standard deviation (SD) shown in Figure 1e. Figure 1f is the fitting error, which is 
defined as the difference between output (Figure 1d) and reference (Figure 1a). Note that both the SD and fitting 
error are magnitudes smaller than the field itself. The small errors and the agreement between original (reference) 
and fitted potentials confirm the validity of extending Lattice Kriging to assimilate vector fields.
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Here, the background model is essentially arbitrary, but the fitted potential ϕ′ resembles the input field ϕ to a 
large extent. We also tried other background models in the fitting process (not shown here), and the results are 
similar. This implies that with sufficient input data points available, the fitting results are not sensitive to the 
background model.

2.4. Multi-Resolution Modeling by Using Multiple Levels

Lattice Kriging can be used for multi-resolution modeling via implementing basis functions at multiple levels 
using different resolutions. We give an example of the multi-level configuration of basis functions in Figure 2. 
From the coarsest (yellow) to the finest (black) level, Figure 2a shows a setup of three-level basis functions in one 
dimension (1D). The bell-shape curves (RBFs in our case) with peak values of 1 are evenly distributed for each 
level. The coarsest level occupies the whole domain, and its RBFs have the longest separating distance and widest 
width. The finest level occupies the smallest region with the shortest distance and narrowest width of the RBFs. 
In the region where all the three levels overlap, the model has the highest resolution. The resolution relaxes out 
toward the boundary, which allows for the multi-resolution data assimilation.

Figure 1. (a) Reference electric potential; (b) model inputs of LOS electric fields at selected locations; (c) background potential model; (d) fitted potential; (e) standard 
deviation (SD) of fitted potential; (f) errors of fitted potential, (d–a). Units are arbitrary.

Figure 2. Examples of the configuration of multi-level basis functions in (a) 1D and (b) 2D. Units are arbitrary.
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Figure 2b is an example of the 2D configuration of the multi-level basis functions. Every dot represents the center 
of each basis function. Similar to the 1D configuration, the basis functions are the sparsest and occupy the whole 
domain in the coarsest level (yellow); in the finest level (black), the basis functions are the densest and take place 
only at the center region of the whole domain.

Throughout the fitting process, the coefficients of every basis function for each level are obtained, which are then 
used for the reconstruction of the field at this level. The final fitting result is a weighted mean of the reconstructed 
fields at all levels. The weighting factors depend on the application and can be adjusted toward small scales by 
attributing large weights on fine levels or toward large scales by putting large weights on coarse levels. In real 
applications, the finer grids are suggested to be located at the regions with more observations.

2.5. Data Preparation and Boundary Treatment for Electric Field Assimilation

The setup of the model for assimilating real observations is similar to the validation test (Section 2.3) except that 
the coordinate system is different. The coordinate system used in simulating electric field is a scaled plane co-
ordinate system on the surface of the sphere centered at the magnetic north pole. The coordinate transform from 
magnetic latitude (MLAT) and local time (MLT) to the model coordinate in the northern hemisphere is

� =
(�
2
−

��
180

)

cos
( ��
12

)

 (34)

� =
(�
2
−

��
180

)

sin
( ��
12

)

 (35)

where φ is MLAT in degree and t is MLT in hour. After the data assimilation, the inverse coordinate transform is 
performed to obtain magnetic coordinates.

In the high-latitude ionosphere, the plasma motion is dominated by the drift motion

𝒗𝒗 = 𝑬𝑬 × 𝑩𝑩
𝐵𝐵2 (36)

So, all ion drift measurements used in this study are transformed to equivalent electric fields using

𝑬𝑬 = −𝒗𝒗 × 𝑩𝑩 (37)

For current development, the lower latitude boundary is set at 30° MLAT, where we assume the electric field 
vanishes. Since typical electric field observations are on the order of 10 mV/m and the errors are about 1/5–1/3 
of the observations, the setup of the boundary condition consists of small values (10−3 mV/m) with large errors 
(100 mV/m). The small value term is used to force the fitting results to approach 0 at the boundary, while the 
large error term is to minimize the boundary impact on the fitting of the internal field (poleward of 50° MLAT), 
which is the focus of this study.

3. Application of Lattice Kriging to Real Observations
The validate test demonstrates that Lattice Kriging can recover the synthetic electric fields (Section 2.3); now, we 
apply it to real observations and examine its performance. We choose the St. Patrick's Day storm (17 March 2015) 
as an example, because it is the strongest geomagnetic storm in solar cycle 24 and has reasonable SuperDARN 
data coverage. The geomagnetic indices during the two-day storm period are shown in Figure 3. IMF Bz turns 
south at around 05 universal time (UT) on March 17 (Figure 3a), marking the start of the geomagnetic storm. 
The southward Bz lasts for almost one day before it returns to neutral at around 05UT on March 18, after which 
there are still minor IMF variations. IMF By is quite variable during the time. Figure 3b shows solar wind veloc-
ities and densities. The enhancement in the solar wind is clear during the southward Bz period. Figure 3c shows 
auroral electrojet (AE) indices. Strong AE variations indicate that the auroral activity is high during the time. 
The symmetric horizontal component of geomagnetic field (SYM-H) index is shown in Figure 3d, from which 
we can tell that the large substorm activity lasts until midnight in March 17 and the storm is still in the recovery 
phase till midnight in March 18.
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During the time, there are 19 northern hemisphere SuperDARN radars operating. The names and locations are 
given in the Supporting  Information  S1 for reference. The gridded ion velocity data are used, which have a 
spatial resolution of 0.5° and temporal resolution of 2 min. We will first use SuperDARN LOS ion drift data to 
perform data assimilation and analyze the errors using different statistical background models and resolutions in 
Section 3.1. Multi-level fitting is discussed in Section 3.2. Then, we add the measurements from PFISR into the 
data assimilation and compare the assimilated results locally (Section 3.3).

3.1. Assimilation of Electric Potential Using SuperDARN Data

We carry out six different settings for the fitting, which comes from the combination of two different background 
models (SuperDARN SHF and Weimer 2005 model) and three different resolutions (2°, 5°, and 8° in longitude 
and latitude). In all cases, the basis functions fill up the whole domain with equal distances, that is, a single res-
olution assimilation for each setting. Since the fitting domain is set as a square with edge length 60° × 2 = 120°, 
and the basis functions are equally spaced; the number of basis functions used is then (120/r+1)2, where r is the 
resolution. For the three cases mentioned in this section, 256 basis functions are used for the 8° case, 625 basis 
functions are used for the 5° case, and 3,721 basis functions are used for the 2° case. Figure 4a shows SuperDARN 
LOS ion drift measurements at 09:37 UT on March 17. In this study, we examine the impact of the background 
model to the data assimilation results by using SuperDARN SHF potential maps versus Weimer model, which are 
shown in Figures 4b and 4c, respectively. Both SuperDARN SHF and Weimer potentials give two-cell patterns 
of similar magnitudes. In SuperDARN SHF potential, the peak magnitude is about 30 kV, while in the Weimer 
model, the peak magnitude is slightly larger at about 40 kV. The positive cell of SuperDARN SHF potential is 

Figure 3. Geomagnetic indices on 17–18 March 2015: (a) IMF By and Bz, (b) solar wind velocity and density, (c) AE indices, 
and (d) SYM-H.
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located at a lower MLAT compared to Weimer model. SuperDARN SHF potential shows more spatial variations 
while the Weimer model is more uniform. The background potential maps are used to derive LOS electric fields 
and used as ZLOS in Equation 26 for the assimilation procedure.

Figures 4b1–4b3 and Figures 4c1–4c3 show assimilated electric potentials for the six different settings with Su-
perDARN SHF and Weimer as background models, respectively. Using the same background model, the fitted 
results of different resolutions are generally similar except with slightly different magnitudes. A cross comparison 
of different background models (e.g., Figure 4b1 vs. Figure 4c1, Figure 4b2 vs. Figure 4c2, and Figure 4b3 vs. 
Figure 4c3) shows that the fitted potential is smoother and the negative cell has a larger amplitude using Weimer 
model than SuperDARN SHF, even though the general two-cell structure is similar.

To examine how the fitting results are related to the background model, we compare Figures 4b1–4b3 with Fig-
ure 4b (SuperDARN SHF) and Figures 4c1–4c3 with Figure 4c (Weimer model). Figures 4b1–4b3 are similar to 
Figure 4b to a large extent due to the fact that SuperDARN SHF is largely fitted upon SuperDARN LOS ion 

Figure 4. (a) SuperDARN LOS ion drift measurements, (b) SuperDARN SHF potential, (c) Weimer potential model, (b1–b3) fitted potentials using SuperDARN SHF 
potential as background model, (c1–c3) fitted potentials using the Weimer model as background model. Units are mV/m for electric fields and kV for potentials.
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drift measurements, which has already contained a large bulk of the observational information. One noticeable 
change is that the negative cell becomes more negative after applying Lattice Kriging. On the other hand, from 
the Weimer model to the fitting result using it as a background model (Figure 4c vs. Figures 4c1–4c3), significant 
differences are seen: (a) the comparable magnitudes of the positive and negatives cells are modified to a very 
negative cell (below −80 kV) and a mild positive cell (∼30 kV), (b) the inequal areas of the two cells are modified 
to be approximately equal, and (c) the negative cell is moved to a lower MLAT. Such modifications result from 
the fusion of the real-time observed LOS electric fields, which are not captured in the Weimer empirical model. 
The fitting process weighs more on the observations than the background model; therefore, the fitting results are 
dominated by observations whenever they are available.

From Figure 4c (original Weimer model) to Figure 4c3 (fitted results using Weimer as background model), the 
potential pattern changes significantly even in regions where data coverage is sparse, for example, the post-noon 
sector from 12 to 18 MLT. To examine how the input data impact the fitting process, we perform several tests by 
varying the total amount of data inputs. The fitting results in 8° using the Weimer background model are shown 
in Figure 5. In the extreme case that no data are inputted into the model, the fitting result (Figure 5c) is literally 
the same as the background model. In this case, no data are incorporated into the fitting process, and the result 
converges to the background model with d = 1 and c = 0 in Equation 9, which further validates our method. In 
Figure 5d where we only include sparse observations from 12 to 24 MLT, the fitting result still appears close to 
the background model. As more data are used (from Figure 5d to 5f), the fitting results gradually deviate from the 
background model and become more determined by the data. This test suggests that data can impose significant 
influences on the background patterns in the region away from the data. In other words, the impacts of data tend 
to be remote and global.

To demonstrate how the fitting process introduces mesoscale variations in electric fields and ion drifts (converted 
from electric fields using Equation 36), the fitting results in 2° using Weimer as the background model at 09:37 
UT are shown in Figures 6a1 and 6a2. Electric fields and ion drifts solely from the Weimer model are shown 

Figure 5. (a) Input data coverage at 09:37 UT, (b) electric potentials from the Weimer model, (c) fitting results with no input data, (d) fitting results with data only 
from 12 to 24 MLT, (d) fitting results with data only from 0 to 12 MLT, (e) fitting results with all available data.
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in Figures  6b1 and  6b2 for comparison. There are clear differences, and the fitted maps show more regional  
structures than the empirical Weimer model. For instance, around 70° MLAT and 00 MLT, the local divergence 
and convergence in electric fields (Figure 6a1) and local ion drift vortices (Figure 6a2) are only seen in the fitted 
maps. Mesoscale electric fields, which are missing in the empirical model, start to emerge when SuperDARN 
observations are included in the fitting process.

To better evaluate the fitting outcome and performance, we analyze the fitting error defined as the root-mean-
square error (RMSE) in terms of the LOS electric field differences between fitted results and observations.

𝜀𝜀 =
√

1
𝑛𝑛
∑𝑛𝑛

𝑖𝑖=1 (−∇𝜙𝜙(𝒙𝒙𝑖𝑖) ⋅ 𝒌𝒌(𝒙𝒙𝑖𝑖) − 𝐸𝐸LOS(𝒙𝒙𝑖𝑖))2 (38)

where n is the total points of observations, ϕ(xi) is the fitted potential, and −∇ϕ(xi)·k(xi) gives its projection onto 
the fitted LOS electric field. ELOS(xi) is the observed LOS electric field.

Figure 7 shows comparisons of the fitting errors from all cases and the errors solely from background models are 
also shown as a reference. Figures 7a1 and 7b1 show fitting errors at 09:37 UT. In Figure 7a1, the fitting errors  
decrease as resolutions increase and the errors are all smaller than those from SuperDARN SHF, which means 
that the fitting process successfully reduces the errors and captures more information in the data as resolution 
increases. The fitting error of using 2° resolution decreases by 30% compared with the background model. In 

Figure 6. (a1) Fitted electric field, (b1) Weimer electric field, (a2) fitted ion drift, (b2) Weimer ion drift. Potential is 
overplotted in all subfigures. Arrows represent either electric field or ion drift, and the color contour represents the fitted 
potential. Units are mV/m for electric fields, km/s for ion drifts, and kV for potentials.
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Figure 7b1, the fitting errors decrease more than half compared with the Weimer model and more significant 
improvements are seen in the higher resolution assimilation. Cross comparing Figure 7a1 with Figure 7b1 in each 
resolution, the fitting errors are of the similar magnitude no matter which background model is invoked. This con-
firms that the fitting results are not sensitive to the background model when sufficient observations are available.

Figures 7a2 and 7b2 show the fitting errors during the whole day (the results of 2° and 5° are given as examples). 
The RMSE in Weimer model is divided by 2 for displaying purposes in Figure 7b2. In general, Lattice Kriging 
reduces the LOS electric field error when 2° and 5° of fitting resolutions are used. In Figure 7a2, the fitting results 
using SuperDARN SHF decrease the error by more than 30% during 07:00 and 15:00 UT, while in Figure 7b2, 
the fitting results using the Weimer background model decrease by more than half during most of the time. The 
fitting errors decrease with increasing fitting resolutions in both cases in accordance with Figures 7a1 and 7b1. 
This implies that more structures in data are captured by using higher resolutions and Lattice Kriging generally 
performs better than the fitting using global harmonics.

3.2. Multi-Resolution Assimilation of Electric Fields Using SuperDARN Data

To demonstrate the capability of multi-resolution data assimilation (Section 2.4), we set up two-level basis func-
tions to perform the fitting and analyze the results (Figure 8a). The basis functions of the coarse level are sep-
arated by 5° and cover the whole domain; those of the fine level are separated by 2° and only cover half of the 
domain. Note that for the pure 2° and 5° cases, a single resolution (either 2° or 5°) is used throughout the whole 
domain. In Figure 8a, the outer circle marks the low-latitude boundary at 30° MLAT, and the middle circle marks 

Figure 7. RMSE comparison of the fitting results: (a1) RMSE of the LOS electric fields using SuperDARN SHF as 
background model at 09:37 UT; (b1) same as (a1) except for using the Weimer model as the background model. (a2 and b2) 
RMSE during the whole day using SuperDARN SHF and Weimer as background models, respectively. The errors of Weimer 
model are divided by 2 in (b2) for displaying purposes. Red, blue, and yellow colors are for the fitting results under the 
resolutions of 2°, 5°, and 8°, respectively, while black is for the background model.
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the 50° MLAT circle, which is of our concern and outputted. The multi-level fitting region (inner square in Fig-
ure 8a) largely overlaps with the output domain (middle circle in Figure 8a). Such configuration (referred to as 
fixed-hybrid fitting) is designed to take advantage of the most available SuperDARN observations, which take 
place mostly poleward of 50° MLAT.

Figure 8b shows the fitted potential and electric field at 09:37 UT. Comparing with Figures 4b1–4b3, the large and 
mesoscale structures are similar. The fitting error shown in Figure 8c is slightly smaller than the 2° fitting error, 
which indicates that the fixed-hybrid fitting can better simulate the mesoscale structures of the electric field. Fig-
ure 8d shows the fitting errors for the whole day. Again, the fixed-hybrid fitting has the lowest errors throughout 
most of the time. We list the averaged RMSEs of LOS electric fields throughout the day for all cases in Table 1. 
The top row indicates the resolution used for each case and the first left column indicates the selection of the 
background model. The daily mean error from the background model itself is listed in the last column. Using Su-

perDARN SHF as the background model, the fixed-hybrid fitting decreases 
the RMSE by 29%, and the pure 2° case decreases by 19%, compared with 
the background model itself. Using Weimer model, these two decreases are 
68% and 66%, respectively.

Here, the multi-level case applies the high-resolution grids to a fixed region, 
but the real measurements and data coverage usually change with time. Ap-
plying high-resolution grids to the region without data coverage causes a 

Figure 8. Multi-resolution fitting case: (a) Two-level basis function setup, (b) fitted potential and electric field, (c) 
comparison of fitting errors with 2° and 5° cases, and (d) fitting errors for all day. Units are mV/m for electric fields and kV 
for potentials. The correspondence of x and y in (a) with MLT and MLAT can be found in Section 2.5.

Fixed-hybrid Auto-hybrid 2° 5° 8° BG

SuperDARN 5.71 6.51 6.44 7.37 7.64 7.99

Weimer 5.46 6.45 5.80 7.67 8.81 17.11

Table 1 
Daily Means of RMSEs of LOS Electric Fields for All Cases (Unit Is mV/m)

 15427390, 2022, 1, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2021SW

002880, W
iley O

nline L
ibrary on [20/02/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Space Weather

WU AND LU

10.1029/2021SW002880

15 of 18

waste of computing time and no substantial improvement is guaranteed. We 
perform a new test case with an auto-hybrid fitting approach (distinguished 
from the aforementioned fixed-hybrid fitting). The new setup of the auto-hy-
brid fitting consists of two levels: the low-resolution (5°) level covers the 
whole domain, while the high-resolution (2°) level is implemented in the 
region with observations, that is, determined by the data. We apply an auto 
adjustment to the high-resolution level every time to collocate the basis func-
tions with observations. From the fixed-hybrid fitting to this auto-hybrid fit-
ting, since the high-resolution basis functions in regions where observations 
are unavailable are removed, it has fewer basis functions than the fixed-hy-
brid fitting. The fitting error of the auto-hybrid fitting is shown in Figure 9 as 
the blue line. The fitting errors from the uniform 2° basis setup (black line) 
and the fixed-hybrid fitting (red line) are also plotted in the figure. The errors 
from the auto-hybrid fitting are only slightly larger than the fixed-hybrid fit-
ting and of similar magnitude as the 2° case.

It is worth mentioning that the computation time for the fixed-hybrid fitting 
is ∼40% shorter than the pure 2° case, and the auto-hybrid fitting enables 
a time decrease of ∼80%, which suggests that with a proper setup of basis 
functions, the auto-hybrid fitting is likely the most affordable and efficient 
choice for the regional high-resolution assimilation.

3.3. Local Electric Field Modeling Using PFISR Data

On March 17, PFISR was operating in several different modes (IPY27_
Tracking, Freg732, LTCS35, and WorldDay35) during the day, and ion drifts 

from all modes over Poker Flat as available are used to derive electric fields (Equation 37) for the entire storm 
period. The derived PFISR electric fields are then fed into the data assimilation model in combination with Su-
perDARN measurements to obtain the electric fields. The spatial resolution of PFISR measurements is 0.25° and 
the temporal resolution is typically every 1–2 min.

Shown in Figure 10 is the 2° fitted electric fields at Poker Flat when using SuperDARN SHF as the background 
model. PFISR measurements and the electric field from SuperDARN SHF are also plotted for comparison. 
Roughly speaking, the background model agrees well with PFISR measurements though some large fluctuations 
are missing (e.g., Ex at ∼08:30, 12:00 UT and Ey at ∼06:30 UT, after 11:00 UT). The fitted eastward and north-

ward electric fields from Lattice Kriging, instead, capture such large fluc-
tuations and follow more closely to the real PFISR observations. For exam-
ple, the positive Ey peak at ∼06:30 UT underestimated in SuperDARN SHF 
is largely elevated to a comparable level to PFISR measurements, while at 
∼07:30 UT the peak only present in the background model is attenuated and 
becomes more comparable with PFISR by the fitting process. Nevertheless, 
there are time periods where the fitting results still deviate from the observa-
tions such as Ex after 12:00 UT. The fitting results during these periods might 
be influenced by the ambient SuperDARN LOS electric field measurements, 
which show differences from PFISR.

In summary, Lattice Kriging can capture the short-period variations shown 
in the local data and meanwhile maintain the coherence to the ambient elec-
tric fields to a large extent. Compared with the method of just padding the 
local observations into the background model, Lattice Kriging avoids the 
problem of discontinuity and largely fuses the information from real local 
observations.

Figure 9. Fitting errors (RMSE) using (a) SuperDARN SHF as background 
model, (b) the Weimer model as background model. Red lines show fitting 
errors from the fixed multi-level setup, blue lines show fitting errors from the 
auto adjusted multi-level setup, and black lines show fitting errors from the 
uniform 2° setup for comparison.

Figure 10. (a) Eastward and (b) northward electric fields at Poker Flat. The 
dotted black lines are PFISR observations, blue lines are the SuperDARN 
SHF, and red lines are the Lattice Kriging fitted results.
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4. Conclusions and Outlook
This paper develops a new methodology to assimilate high-latitude electric fields via extending the Lattice Krig-
ing framework to vector fields. This modeling assumes that the fitted field is a Gaussian process. By combining 
the background model (SuperDARN SHF or Weimer model in our case) used as “a priori” knowledge and the 
available observations (SuperDARN and PFISR), the means, variances, and covariances of the to-be-assimilated 
variables (electric fields and ion drifts) are calculated and further used to reconstruct the fields where no obser-
vations are available. By doing so, this methodology assimilates the observational data and provides the fitted 
results for the whole domain of interest.

We systematically evaluate the performance of Lattice Kriging using different resolutions and background mod-
els. We first assimilate the electric fields for the St. Patrick's Day storm (17 March 2015) applying the SuperD-
ARN data. We find that when the same amount of data is provided, the fitting results are similar whichever back-
ground model is used, suggesting that data is a more important factor than the background model in fitting the 
electric fields. By varying the amount of input data, we find that the impacts of data tend to be remote and reach 
the regions without observations. Compared with the background model, data assimilation leads to considerable 
decreases in the RMSE of the LOS electric field. Such improvement is more significant against the Weimer 
model than SuperDARN SHF likely because the former is empirical, while the latter has incorporated some of 
the data information already. Comparing across the different fitting resolutions (2°, 5°, and 8° in our case), higher 
resolution always leads to smaller RMSE, suggesting that more details in the observations are captured with more 
basis functions (higher resolutions) used in the fitting model.

We demonstrate the capability and advantages of the multi-resolution modeling using multi-level basis functions. 
2° in the fine level and 5° in the coarse level are adopted to form up a two-level framework as an example. Two 
types of configuration of the high-resolution (2° in this case) grids are tried. The fixed-hybrid grid covers the 
largest region that all the data appear and use it as a fixed region to do the high-resolution fitting. The auto-hybrid 
grid adjusts the high-resolution region according to the real-time data coverage. The fixed-hybrid fitting errors 
further decrease compared with the pure 2° case and the computation time shortens by 40%, while the auto-hy-
brid fitting has a similar fitting error as the pure 2° case and the decrease of computation time reaches ∼80%, 
suggesting that (a) the multi-level basis function can further improve the fitting, (b) using the relatively coarse 
grid in the region without observations does not degrade the performance and saves computational cost, and 
(c) the auto-hybrid fitting provides an efficient way to perform the regionally high-resolution data assimilation. 
Using the SuperDARN SHF as the background model, the multi-level assimilation decreases the RMSE by 29%, 
and 2° case decreases by 19%, compared with the background model itself. By using the multi-level basis func-
tion setup (especially auto-hybrid fitting), high-resolution observations can be better assimilated with affordable 
computational resources.

Even though the multi-level basis function setup can effectively reduce errors compared with other setups, the er-
rors are still substantial (daily mean of 5.71 mV/m for the auto-hybrid fitting and 6.51 mV/m for the fixed-hybrid 
fitting). To further reduce the errors, there are two possibilities: (a) The covariance matrix is to be improved. The 
covariance matrix used here is derived from a Gaussian Markov random field (which assumes two locations are 
correlated only if they are adjacent, Nychka et al., 2015). However, electric potentials/fields are not necessarily 
uncorrelated even if they are apart for some distance. Strictly, an additional term indicating the medium range 
electric field correlation needs to be included in the covariance matrix to describe the real-world electric field 
characteristics and (b) the mathematical formulation is to be modified based on non-Gaussian process models. 
The current development simply assumes the electric field is a Gaussian process, while in real world, the dis-
tribution of electric fields deviates from Gaussian (Golovchanskaya & Kozelov, 2010a, 2010b). Still, Gaussian 
statistics has good properties for fast computation, such as the sparse matrix calculation as aforementioned, which 
satisfies as a starting point.

Further, we include the PFISR observations in the model and the fitting results at Poker Flat better capture the 
short-period electric field variations shown in the data than those from the global spherical harmonics fitting (i.e., 
SuperDARN SHF). This indicates that our method can efficiently fuse and then recover the local measurements, 
and importantly, maintain the coherence of the patterns with the ambient electric fields.

The decreases in RMSE, flexibility of incorporating various data sources, and the benefits of the multi-level setup 
embedded in Lattice Kriging show that it is a powerful tool in the data assimilation application. The application 
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of such method is not limited to electric field and ion drift, but can also be applied to other physical quantities, 
such as field-aligned current as a scalar field and wind as a vector field. For electric fields, we use the curl-free 
assumption to provide an additional constrain for the modeling. For neutral winds in relatively large scales (e.g., 
planetary and synoptic scales), the vertical gradient of the vertical wind is negligible and the horizontal winds are 
approximately divergence free. A stream function is well defined with the divergence-free assumption. Defining 
basis functions in a similar way as mentioned in Section 2, the modeling of the stream function using horizontal 
wind measurements can be similarly formulated. The new Michelson Interferometer for Global High-resolution 
Thermospheric Imaging (MIGHTI) instrument onboard Ionospheric Connection Explorer (ICON) provides neu-
tral wind measurements over the midlatitude and low-latitude regions, which may provide an optimal data set to 
assimilate the multi-resolution structures of neutral dynamics using Lattice Kriging.

Data Availability Statement
SuperDARN data are obtained from http://vt.superdarn.org and PFISR data are obtained from https://amisr.com. 
The code of Lattice Kriging for electric fields is published at https://github.com/hzfywhn/LatticeKriging. The 
data used to produce the figures are available at https://data.mendeley.com/datasets/n6jsffz4n7.
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