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SPATIAL STATISTICS AND ANALYSIS OF EARTH’S IONOSPHERE

(Order No. )

THOMAS W. BUTLER

Boston University, College of Engineering, 

Major Professor: Joshua L. Semeter, PhD,
Department of Electrical and Computer Engineering

ABSTRACT

The ionosphere, a layer of Earths upper atmosphere characterized by energetic charged parti-

cles, serves as a natural plasma laboratory and supplies proxy diagnostics of space weather drivers

in the magnetosphere and the solar wind. The ionosphere is a highly dynamic medium, and the

spatial structure of observed features (such as auroral light emissions, charge density, temperature,

etc.) is rich with information when analyzed in the context of fluid, electromagnetic, and chemical

models.

Obtaining measurements with higher spatial and temporal resolution is clearly advantageous.

For instance, measurements obtained with a new electronically-steerable incoherent scatter radar

(ISR) present a unique space-time perspective compared to those of a dish-based ISR. However,

there are unique ambiguities for this modality which must be carefully considered. The ISR target

is stochastic, and the fidelity of fitted parameters (ionospheric densities and temperatures) requires

integrated sampling, creating a tradeoff between measurement uncertainty and spatio-temporal

resolution.

Spatial statistics formalizes the relationship between spatially dispersed observations and the

underlying process(es) they represent. A spatial process is regarded as a random field with its

distribution structured (e.g., through a correlation function) such that data, sampled over a spatial

domain, support inference or prediction of the process. Quantification of uncertainty, an important

component of scientific data analysis, is a core value of spatial statistics.

This research applies the formalism of spatial statistics to the analysis of Earths ionosphere us-

ing remote sensing diagnostics. In the first part, we consider the problem of volumetric imaging

using phased-array ISR based on optimal spatial prediction (”kriging”). In the second part, we

develop a technique for reconstructing two-dimensional ion flow fields from line-of-sight projec-
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tions using Tikhonov regularization. In the third part, we adapt our spatial statistical approach to

global ionospheric imaging using total electron content (TEC) measurements derived from naviga-

tion satellite signals.
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On notation

Since this thesis makes use of both multidimensional quantities (e.g. sets of parameters) and spa-

tial coordinates, it is helpful to distinguish these notationally. For this purpose, a vector is a phys-

ical quantity (such as position or velocity) having both magnitude and direction and is typeset

thus: v =
[
vx vy vz

]T
. An array is an ordered n-tuple used in computations and is typeset so:

e =
[
e1 e2 · · · en

]T
. Formulas with matrix-vector products, for instance, become matrix-array

products, so to speak (though a position vector may still appear as an argument, as in x (s )). When-

ever an ordered sequence of vectors (e.g. a vector-valued field) is involved in computations with

a matrix, the sequence is decomposed into its individual components and the components are

stacked. Such an array signified by combining the notation for arrays and vectors:

v =
[
vTx | vTy | vTz

]T
=

[
vx (s1) · · ·vx (sn) | vy (s1) · · ·vy (sn) | vz (s1) · · ·vz (sn)

]T
.

Matrices are set as boldface, usually majuscule, letters. Both vectors and arrays are regarded as

columns. When it is important to regard matrices as groups of augmented arrays, the construction

proceeds column-wise.

Also, matrix products and particularly matrix inverses represent a rather general form of short-

hand. Their purpose is pedagogical, to emphasize the algebraic patterns of their derivation. In

practice, these terms should seldom be computed directly! Instead, many subroutines exist to

solve the linear system Ax = b which exploit the structure of the matrix A, and which are both

faster and more numerically stable than direct computation of A−1. Additionally, it is not advis-

able to form the normal equations matrix ATA, since (among other things) the matrix product is

usually performed in the native numerical precision of A, and the truncation error of this operation

carries through to all subsequent operations (Golub and Van Loan, ).
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Chapter 1

Introduction

The material for this thesis was prompted by an interest in remote sensing of the Earth’s ionosphere.

I was told about a new radar. It had the unusual ability to steer its beam in many directions during

the time a dish antenna would dwell in one direction, transmitting and receiving enough pulses to

develop reliable statistics. This seemed interesting, if perhaps a little haphazard (petulant, even!).

Then I was told the advantage of such a mode: direct three-dimensional imaging of the ionosphere!

And I could be one of the first to try it out! Now that was a project!

I spent the next several years digging through data, learning about the ionosphere itself, look-

ing for a project. Along the way, I developed a few visualizations I was quite proud of. One of the

challenges in making a graphical representation of this data is interpolating it to a regular rectan-

gular grid. Sometimes the results would look great, sometimes not so great. Since acquiring a more

detailed image meant sacrificing integration time, we knew we were dealing with quite a noisy

signal. So how much faith should we put in an interpolation based on the fact that the shapes it

reveals seem “coherent?”

In other words, how do we distinguish spatial structure from spatial randomness? Do we at

all? It’s an issue that seems to be ignored at least as often as it’s encountered.

And so I encountered kriging. At first it was simply a useful way of getting data lined up

on a display without the artifacts of linear or cubic interpolation. But it also came with a “kriging

variance,” which seemed to be a way of describing just what I had been trying to articulate: the idea

of spatial uncertainty. And the opportunity of making use of that uncertainty if you have a model

to describe it accurately. This led me to the realm of spatial statistics, where I stand now. This

document bridges two periods of my career, as I hope my work will help unite the communities of

researchers involved in these fields.
This question echos the old objectivist/subjectivist divide in statistics. I maintain that we should acknowledge the

distinction, as well as the ambiguity in decoupling the two (God does play dice!). We should state our assumptions about
how the two factor, and always include error bars!
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1.1 The ionosphere

The material for this thesis has evolved from work concerning the optimal analysis of remote sens-

ing observations of the Earth’s ionosphere. The ionosphere (altitude 90 km to 1000 km) is the layer

of Earth’s atmosphere defined with respect to the behavior of charged particles. Namely, the ki-

netic energy of charge carriers within the ionosphere is comparable to the energy of their Coulomb

attractions. On the smallest scale, positive and negative charges continually oscillate while the ag-

gregate gas appears neutral on the whole. This quasineutral state is called a plasma, and because

it is governed by a combination of fluid-mechanical and electromagnetic laws, plasma physics re-

mains an active field of research. Although the laws of plasma physics are well-established from

first principles, their behavior is often complex.

Earth’s ionosphere is of particular interest for its availability and its size. But beyond these,

the ionosphere is part of an active geospace environment. The response of the ionosphere to the

many environmental drivers (among them Earth’s gravity, the geomagnetic field (GMF), and the

solar wind) provides proxy diagnostics for those same drivers.

Measurements of the ionosphere are thus characteristically complex: dynamic activity with rich

(and often surprising) spatial and temporal patterns. Nevertheless, studying these patterns and

structures has led to many discoveries, despite the complexity of the underlying processes. Indeed,

as such structures are observed with finer resolution, ever more unexpected processes continue to

be discovered.

1.2 Spatial statistics & measurement

While statistical analysis is nothing new to the ionospheric science community, instruments are

becoming available with the bandwidth, throughput, and resolution to present a uniquely spa-

tial context. For example, Advanced Modular Incoherent Scatter Radar (amisr), an instrument for

studying the ionosphere, uses a phased antenna array to rapidly acquire measurements from many

directions.

One might presume to use image analysis techniques or some ad hoc spatial extension of the

usual statistical tools, which were developed for radar in D. But this raises the question of whether

the information contained in the data has been used optimally. This, in turn, is subject to how one

Plasma, the so-called “fourth phase” of matter seems quite exotic to us Earthlings, sheltered as we are by Earth’s mag-
netic field. In fact, some 99 % of the matter in the universe is in the plasma state.
This is part of a larger trend toward doing more with greater numbers of smaller devices. Consider also small satellites,

sensor networks, and aggregators of Big Data.
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understands the terms “information” and “optimally.”

This work does not attempt to quantify or derive theoretical bounds for the information within

observations of process A by instrument B. Nor does it claim to present the “best” method of

analysis. The techniques presented herein are justified within the context of spatial statistics, but

represent only a limited subset of possible choices. As always, the practitioner’s decision relies on

a combination of practical constraints, experience, and personal preference.

The approach presented here is rooted in a branch of statistics tailored to the case of data and

random processes whose relative positions in space strongly influence their distributional proper-

ties. Spatial statistics is the subject of Chapter .

While an electronically-steerable instrument like amisr is quite valuable in single-beam exper-

iments (e.g. Varney et al., ), it is notable for its ability to repoint the beam on a pulse-by-

pulse basis. This enables experimenters to capture the complex spatial structure of the ionospheric

plasma in a “snapshot” mode.

In the case of a dish radar, the only reasonable strategy for accumulating statistics is to dwell

in a given direction long enough to gather a statistically significant sample. Steer the antenna,

and repeat. On the other hand, an electronically-steerable phased array can send a single pulse,

receive its return signal, then adjust its phase table to steer the beam. Cycling in this way through

a pre-defined table of look directions, each returned power signal is registered in D space. In this

way it constructs a D image through a kind of time-domain multiplexing. The beam steering is

fast enough that each sweep is essentially simultaneous, so that the resolved image truly represents

the average activity within the region of interest. This can be likened to the scanning of a charge-

coupled device (ccd), in that the radar acquires the measurements needed to form an autocorrelation

function (acf) essentially simultaneously in all directions through a raster scan (or similar) of the

sky. Extending that analogy, a scanning-mode dish antenna would be a slit-scan camera.

There are presently two amisr installations: Poker Flat Incoherent Scatter Radar (PFISR) in Alaska

and the Resolute Bay isr – north face (RISR-N) in Nunavut, Canada. PFISR will be relocated to Ar-

gentina in , plans are underway to construct RISR’s south-facing companion, and an Antarc-

tic AMISR mission has long been talked about. The EISCAT Scientific Association’s EISCAT D

project, also based on a phased-array platform, promises even greater flexibility. We expect more

researchers to take advantage of these tools as they become available.
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1.3 Flow field estimation

The spectrum of incoherent scatter returns is very accurately modeled (Farley, ; Evans, ),

given perfect knowledge of a small set of state parameters. Recovery of these state parameters from

data is a problem of inverse theory. For instance, the plasma drift velocity results in a bulk Doppler

shift of the return spectrum. Estimating this drift is equivalent to estimating the projection of

plasma drift onto the direction of the radar line-of-sight (LOS).

A monostatic radar (single transmitter/receiver) can measure only this one component. How-

ever, using neighboring measurements, it is possible to reconstruct vector velocities. Indeed, using

constraints motivated by physical properties of the random process, it is possible to reconstruct a

flow-field from a spatially distributed set of monostatic measurements. Chapter  discusses one

such method of reconstruction as an example.

1.4 Total electron content

The D incoherent scatter radar (isr) imaging application above is an example of optimal interpo-

lation or spatial prediction. Spatial statistics can also be applied to the problem of global map-

ping of satellite observations. Nychka et al. (), Berliner et al. (), Stein (), and Kang

et al. () all demonstrate Bayesian methods for efficient global-scale prediction from sparse

satellite measurements. Wikle et al. () and Cressie and Johannesson () demonstrate

multi-resolution approaches. Cressie and Johannesson () introduce fixed-rank kriging (frk),

a reduced-dimensional method also suitable for global prediction.

A related and independent diagnostic of the ionosphere is total electron content (TEC), or elec-

tron density integrated along a column. TEC is related to the total ionization encountered on the

ray path of a satellite-to-ground signal, e.g. a Global Navigation Satellite System (GNSS) signal. The

ionosphere’s effect on the navigational accuracy of GNSS signals is significant enough to warrant

the development of augmentation systems (such as Wide-Area Augmentation System (WAAS), (see

Blanch, ; Sparks et al., a)), which use TEC to correct for these effects. Dense, global cov-

erage of TEC estimates is limited by the orbital path of the satellites and the availability of ground

receivers). Hence the need for spatial prediction if no data are available at a requested position.

While GNSS augmentation systems typically use regional results, global TEC mapping is also

of interest to atmospheric physicists, since (in well-covered regions) this provides a high spatial

and temporal resolution glimpse of ionospheric events. This is especially interesting in conjuction
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with electron density imaging from isr in chapter , which (after integrating) provides a direct

comparison with TEC. Global prediction of TEC is the subject of chapter .

1.5 Major contributions of this dissertation

The sections above outline the specific topics comprising the chapters to follow. The projects de-

scribed therein may appear disjointed. In fact, a few threads tie the subjects of chapters 3 to 5

together. The overarching themes constitute the major contributions of this dissertation:

• A framework for remote sensing, drawing from spatial statistics and described in chapter .

Example applications of this framework to

• isr imaging (direct D imaging of the ionospheric state parameters, chapter ),

• plasma flow field reconstruction (higher-level analysis of isr state parameters, chapter ),

• regional and global mapping of TEC (spatial statistics applied to satellite measurements,

chapter ).

In addition, some practical matters are addressed and implemented in the accompanying Python

and MATLAB codes:

• tips for efficient (i.e. vectorized) techniques for implementing spatial statistical data analysis

on medium- to large-size data sets

• suggestions for Bayesian implementations accommodating non-linear models and non-Gaussian

distributions

Not limited to ionospheric science

Although this thesis presents spatial statistics entirely within the context of remote sensing of

the ionosphere, the techniques are applicable to any framework in which observations possess a

dependency structure relative to their location in space.

Spatial statistics can aid in the efficient deployment of sensor networks. Le and Zidek ()

discuss geostatistical data analysis for environmental monitoring networks: estimation of struc-

tural parameters for the purpose of designing efficient data gathering networks (see also Zidek

et al., ).
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Even more generally, spatial statistics can be used to describe and analyze properties related

by their proximity in non-spatial senses of distance (e.g. feature space, or discrete / cabdriver

distance, constrained distances, river crossing, etc.). Kuzma () expounds on the connections

between spatial statistics, direct inversion, (e.g. Tikhonov regularization, least squares, etc.), and

support vector machines, which “can be applied to data whose axes are any form of data,” not only

spatial coordinates.
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Chapter 2

Mathematical Preliminaries

The aim of science is not to open the door to infinite wisdom but to set a limit to infinite
error.

Life of Galileo
Bertolt Brecht

Modern remote sensing platforms provide an abundance of spatial (and spatiotemporal) data.

The sheer volume of which data could overwhelm computing resources if handled naı̈vely. Further-

more, such data presents other challenges relating to their uniquely spatial nature. For instance,

measurements are often collected at arbitrary or random positions, either punctually or integrated

over a region, or in tandem with some other (non-coincident) dataset. Whereas the objective is

often to infer some properties over a continuous spatial domain, data are necessarily finite and

discrete (so that any dataset, however large, is necessarily incomplete). To make inferences at any

point within the domain, the first step is to “fill in the gaps” not covered by the data. Hence the

emphasis in this chapter on optimal spatial prediction.

2.1 Probability and Statistics

It is assumed the reader is familiar with probability and statistics at the undergraduate level. Any

of the standard texts will provide the necessary background. However, for reference and consis-

tency of notation, the most commonly used elements are defined here.

2.1.1 Random variables

A random variable (r.v.) X maps a random event to the space of real numbers. X is associated with

a function PX : R 7→ [0,1], called the cumulative density function (cdf):

PX(a) = Pr(X ≤ a) .





Alternatively, X is characterized by the probability density function (pdf):

pX(a) =
d

da
PX(a) with pX(x) ≥ 0 and

U
pX(x)dx = 1.

Moments

Whenever attention to pdfs is restricted to summaries, only the first two moments are considered.

The mean of X is

µX = E[X] =
U
s pX(s)ds,

and the variance is

σ2
X = E

[
(X −µX )2

]
= E

[
X2

]
−

(
E[X]

)2
.

For two r.v.s X and Y , the covariance is

σXY = E
[
(X −µX ) (Y −µY )

]
= E

[
XY

]
− µXµY .

It is often convenient to begin by restricting our attention to the first two moments of a pdf.

(This implies the r.v. X has a Gaussian distribution, which is completely specified by its first two

moments.) The methods developed in classical geostatistics invoke this approximation. When

interpreting results, it is important to keep in mind that this approximation is quite strong and

might be unjustified.

2.1.2 Random vectors

A principal theme of spatial statistics is the dependency of neighboring samples. It will be neces-

sary to consider the interrelationship between many random variables at once. These can be stacked

into columns to form the more convenient random vector (r.v.) notation. For instance, N variables

make up the r.v.

X =


X1
...
XN

 .
The expectation operator works element-wise. So the mean vector is just the stacked vector of

means:

µ
X

= E
[
X
]

=


EX1
...

EXN

 ,
This thesis deals only with continuous r.v.s, so the notation for discrete r.v.s is ignored here.
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and the second moments are matrices: the covariance matrix

ΣX = E
[(
X −µ

X

) (
X −µ

X

)T]
= E

[
XXT

]
− µ

X
µT
X

and the cross-covariance matrix

ΣXY = E
[(
X −µ

X

) (
Y −µ

Y

)T]
= E

[
XYT

]
− µ

X
µT
Y
.

2.1.3 Random processes

A random process (r.p.) is a generalization of a random vector to functions with continuous argu-

ments. It may be either scalar- or vector-valued. A realization of X(t), the sample path x(t), is a

deterministic function of t. For any argument t, X(t) = X, a random variable.

The mean process is also a function of time or space:

µX(t) = E
[
X(t)

]
=

U
x pX(t)(x; t)dx.

The second-order moments are functions of two variables. Following typical conventions, denote

the autocorrelation function

RX(u,v) = E
[
X(u)X(v)

]
and the autocovariance function

CX(u,v) = E
[(
X(u)−µX(u)

)(
X(v)−µX(v)

)]
= RX(u,v) − µX(u)µX(v).

The cross-correlation RXY (·, ·) and cross-covariance CXY (·, ·) functions (respectively) are defined

similarly:

RXY (u,v) = E
[
X(u)Y (v)

]
,

CXY (u,v) = E
[(
X(u)−µX(u)

)(
Y (v)−µY (v)

)]
= RXY (u,v) − µX(u)µY (v).

2.1.4 Stationarity

Of prime importance in optimal prediction of a spatial random process is the characterization of

its distributional properties for all s ∈ Ds ⊂ Rd . Stationarity simplifies this. Consider the r.p. X(s)
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sampled at positions si ∈ Ds, i = 1, . . . , k, so that the joint cumulative distribution of the samples is

PX(x(s1), . . . ,x(sk)). Then X(s) is strict-sense stationary (SSS) (or strongly stationary) if, for all k, for

all u, and for all x(si), i = 1, . . . , k,

PX (x(s1), . . . ,x(sk)) = PX (x(s1 + u), . . . ,x(sk + u)) . (.)

In particular, strict stationarity implies the mean does not vary with s and, if the correlation func-

tion exists, it depends only on the distance between two samples:

µX(s) ≡ µX ; CX (s1,s2) ≡ CX (s2 − s1) . (.)

A process that satisfies just (.) is called wide-sense stationary (WSS) (or weakly stationary). A

WSS process need not satisfy the conditions (.), but it has useful properties. The larger class

of intrinsically stationary processes includes all WSS processes. These have a spatially invariant

mean and satisfy the slightly weaker second-order condition

E
[
(X(s1)−X(s2))2

]
= 2CX(0)− 2CX(s2 − s1),

i.e. their increments are wide-sense stationary.

2.2 Optimal Spatial Prediction

Prediction versus estimation

The ultimate goal of geostatistical data analysis is usually prediction of the numerical value of

a function at an unmeasured location. Optimal spatial prediction typically takes the form of a

(linear) predictor that incorporates models describing the data and the underlying process. But,

unlike time series, spatial data lack the following simplifying properties:

• one-dimensionality,

• prescribed directionality (i.e. the “arrow of time” delineating cause and effect),

• (often) uniform sampling.

So, for example, there exists no analogous notion of causality in D or D; the predicted value at

any point is influenced by its neighbors in all directions.

Optimal prediction differs from deterministic interpolation by incorporating a specialized sta-

tistical model of the r.p.. In the time domain, optimal interpolation (a.k.a. filtering or smoothing)
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refers to inference on the state of a system based on a time series of observations. It is common to

refer to the output of, say, a Wiener filter as an “estimate” of the process at that time. In this

context, “estimation” is synonymous with “prediction” in its intuitive sense: a guess of the upcom-

ing state, informed by the immediate history of the system and its typical behavior in response to

causal stimuli.

On the other hand, the following distinction (due to Cressie (, pp.–)) is illustrative

of the stages of spatial statistical analysis. In geostatistics, spatial prediction is often preceded by a

separate stage of structural analysis, which entails selecting a model under which predictions pos-

sess minimal uncertainty. Often this model belongs to a parameterized class, and structural analy-

sis involves specifying the model parameters, which are either assigned based on prior knowledge

or estimated via the usual statistical methods (likelihood, method of moments, etc.). Hence, esti-

mation refers to inference on fixed but unknown parameters, while prediction refers to inference

on the random process.

2.2.1 Geostatistics and spatial statistics

The problem of optimal prediction can be described generally as follows: given a set of observations

{yi | i = 1, . . . ,n}, determine the value ŷn+1 that minimizes a certain objective function. The data {yi}

are ultimately sampled from the r.p. Y with joint distribution P (Y1, . . . ,Yn).

Spatial data are distinguished by their dependence of neighboring measurements. This is ex-

pressed differently for continuous or discrete spatial domains, and for zero-volume (punctual) or

finite-volume (regional) measurements, but all are variations of the First Law of Geography, artic-

ulated by Waldo R. Tobler: “[E]verything is related to everything else, but near things are more

related than distant things” (Tobler, ).

In other words, spatial random processes exhibit a distance decay relationship. This highlights

the role of the structure function in spatial data analysis: individual observations are not inde-

pendent. Optimal prediction exploits the redundancy of such measurements within the context of

such a structure model.

The theory of optimal prediction was applied to spatial data beginning in the early ’s. It is

generally attributed to the geologist Georges Matheron and the meteorologist Pierre Gandin who,

building upon the seminal works of Wiener, Kolmogorov, and others, independently developed

the optimal predictor for this problem. (See Cressie () for a more complete early history.)

Naturally, the optimal predictor of the spatial random process relies on suitable distributional
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assumptions regarding the underlying r.p.. These assumptions are commonly expressed in a sta-

tistical model, whose parameters are estimated from the data themselves. Probabilistic models

acknowledge spatial uncertainty, expressed as either imperfect or incomplete data about the some

quantity, or as the degree of variability inherent to that quantity within the domain. This method-

ology implicitly assumes some degree of regularity within the region of interest (the ergodic prin-

ciple). Using the weaker assumption of (second-order) stationarity, Matheron and Gandin each

derived linear unbiased predictors of Y at s0 based on data at s = (s1, . . . ,sm)T that minimize the

mean-square prediction error (mspe)

mspe = E
[
Y (s)−

(
Ŷ (s0)

)2
]
. (.)

Matheron called this method “kriging” after D.G. Krige, a South African mining geologist whose

work preceded Matheron’s development.

Kriging became the basis for a branch of study called geostatistics, a philosophy for applying

probabilistic methods of inference on random variables (such as mining or oil deposits) over a con-

tinuous domain. These regionalized variables exhibit both spatial correlation and high irregularity

of detail.

For instance, large-scale patterns induces a spatial trend on data, perhaps due to mineral de-

posit patterns. Other processes introduce small-scale variability. These qualitative properties com-

prise a spectrum from long-range spatial dependence (“smoothness”) to short-range detail (“rough-

ness”). It is this balance of factors, often (following Tobler) expressed as a function of the distance

between samples, which allows practitioners to quantify spatial uncertainty, a major goal of geo-

statistics. (Chilès and Delfiner, , p. ).

As a method of data analysis, kriging demands a detailed model of the underlying processes

at each data position, including the dependence structure of observations over the entire domain.

With a view to model selection and estimation, the underlying r.p. is often assumed to be (either

second-order or implicitly) stationary and to have sufficient sample coverage that the process is

separable into low-frequency and high-frequency components. The low-frequency (large-scale)

part can be fitted to a trend model, leaving only the high-frequency (residual) component to fit to

the (stationary) model.

That is, spatial prediction is closely analogous to linear filtering, and optimal spatial prediction

of data involves designing a filter which best represents the continuity properties of the underlying

r.p.. Stein (, ch. ) provides theoretical justification for this analogy, which relies on the
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assumption of wide-sense stationarity (of the process) and interpolation (rather than extrapolation)

being the analyst’s purpose for predicting from data.

Although geostatistics is historically linked to the earth sciences, spatial analysis is relevant to

many other fields such as ecology, public health, computational geometry, image processing, con-

trol theory, sensor networks, machine learning, and complex systems. The more inclusive term

spatial statistics reflects this broader scope. Under this rubric, Cressie () identifies three sub-

domains for formalizing spatial data analysis: () geostatistics for continuous space r.p.s, based

largely on the development from Matheron’s school and incorporating classical statistical formu-

lations; () data on a fixed lattice, using Markov random fields and the Hammersley-Clifford the-

orem to express the relative effects of connections between nodes; and () spatial point processes,

in which the positions of data are randomized. Moore () provides several examples. Gelfand

et al. () provide an up-to-date review. This dissertation is based on the broader sense of geo-

statistics as defined by Cressie, analysis of continuous-space processes.

2.2.2 Simple kriging

To illustrate, we derive the “simple kriging” predictor. We adopt the notation of Cressie and Wikle

() and describe kriging in general terms. In later chapters, we apply similar techniques to

atmospheric/aeronomic data. We wish to predict the value of an unobserved random variable Y (·)

at location s0 based on observations in the region Ds ⊂ Rd .

Let Y (·) , {Y (s) | s ∈Ds} be a zero-mean, second-order stationary r.p. with (known) covariance

function CY (u,v) = Cov(Y (u),Y (v)) ,∀u, v ∈ Ds. Let us also assume an additive noise model to

represent the observations (with measurement error) at locations {si | i = 1, . . . ,m}

Zi = Z(si) = Y (si) + ε(si), (.)

where ε(·) ⊥ Y (·) and ε(·) , {ε(si) | si ∈Ds} is a zero-mean white noise process with finite variance

σ2
ε > 0. We wish to predict Y (s0), based on observations Z = [Z (s1) , . . . ,Z (sm)]T.

From these (noise-corrupted) measurements, we now derive the predictor of Y (s0) that is opti-

mal in the mean-square sense, i.e. that minimizes the mspe given by (.). We restrict ourselves to

Equivalently, the mean process µY (s) is known for all s.
An alternative, geometrical derivation is given by Zimmerman and Stein ().
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the class of predictors that are affine functions of the data Z:

Ŷ (s0;λ,κ) =
m∑
i=1

λiZ(si) +κ = λTZ +κ, (.)

That is, Ŷ is a weighted sum of the data, where the weights λ ∈ Rm are determined based on

the regularity conditions imposed on the process (e.g. in this case, exactly specified mean and

covariance functions), and κ ∈ R can be viewed as a Lagrange multiplier limiting the “size” of the

solution

Combining (.) and (.), the (mean-square) optimal predictor then satisfies the optimality

condition

λ∗,κ∗ = argmin
λ,κ

mspe (λ,κ)

= argmin
λ,κ

E
[(
Y (s0)−

(
λTZ +κ

))2
]

= argmin
λ,κ

Var
[
Y (s0)−

(
λTZ +κ

)]
+
{
E
[
Y (s0)−

(
λTZ +κ

)]}2
= argmin

λ,κ
Var

[
Y (s0)−λTZ

]
+

{
E[Y (s0)]−E

[
λTZ

]
−κ

}2
(.)

(The final equality is because the variance term is invariant to the scalar shift κ.) The second term,

the bias term, is minimized (is indeed exactly zero) by selecting κ = E[Y (s0)]−λTE[Z]. And since

the measurement error is zero-mean, E[Z] = E[Y ] = µ
Y

= (µY (s1), . . . ,µY (sm))T, so that the required

κ = µY (s0)−λTµ
Y

.

With that, (.) becomes

λ∗ = argmin
λ

Var
[
Y (s0)−

(
λTZ

)]
= argmin

λ
CY (s0,s0)− 2

∑
i

λiCov(Y (s0),Y (si)) +
∑
i

∑
j

λiλj (CZ )ij , (.)

where CY (s0,s0) is the process variance, the matrix (CZ )ij is given by the data covariance function,

CZ (si ,sj ) , Cov(Z(si),Z(sj ))

=


CY (si ,sj ) + σ2

ε si = sj

CY (si ,sj ) sj , sj ,

Stationarity, though required for the simple kriging predictor, is not a formal requirement for kriging in general.





and, from the data model (.), the middle term reduces to

2
∑
i

λi Cov(Y (s0),Y (si)) = 2λTcY (s0),

where cY (s0) = (CY (s0,s1), . . . ,CY (s0,sm))T.

Because expression (.) is quadratic in λ, and CZ is positive definite, the unique minimum

satisfies CZλ = cY (s0). Denote the solution to that system λ∗ = C−1
Z cY (s0). Then the constant scalar

term is κ∗ = µY (s0) − cTY (s0)C−1
Z µY

. Substituting these into (.), the simple kriging predictor at

point s0 from data at points {si | i = 1, . . . ,m} is

Ŷsk (s0) = cTY (s0)C−1
Z

[
Z −µ

Y

]
+µY (s0). (.)

The minimized mspe, called the simple kriging variance, by substitution of λ∗ and κ∗ into (.), is

σ̂2
sk (s0) , CY (0)− cY (s0)T C−1

Z cY (s0) . (.)

2.2.3 Some properties of the simple kriging predictor

Exact interpolator. In the absence of measurement error (i.e. Z(si) = Y (si)), Ŷsk(s) is an exact

interpolator; it “honors the data” at their sampled positions {si}. Consequently, at these same

positions, the kriging variance is zero, indicating absolute certainty (since the measurement was

without error). If the data model includes measurement error, the kriging variance is bounded

below by σ2
ε , the measurement noise.

Best linear unbiased predictor. Ŷsk (·) is unbiased, since E
[
Ŷsk (·)

]
= µY (·) = E[Y (·)]. Kriging

belongs to the class of best linear unbiased predictors (BLUPs). The Kalman filter is also a BLUP, as

(.), (.), and (.) suggest. For the Kalman filter, Y (·) is assumed to be a first-order autoregressive

process.

Kriging variance is data-independent. Both Ŷsk (·) and σ̂2
sk (·) can be evaluated for any s ∈ Ds.

But note from (.) that σ̂2
sk does not depend on the data Z. It is completely determined by the

geometry of the problem (position and dispersion of the sample points, and clustering if sampling

is nonuniform) and the regularity/continuity constraints on the process implicit in the covariance
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function CY (·).

Map of uncertainty. It is tempting to interpret σ̂2
sk as a descriptor of local roughness of the data

(Papritz and Stein, ). But since σ̂2
sk does not depend on the data, two independent realizations

of Y (s), sampled at the same set of points, will share identical maps of kriging variance, though

their predicted values may differ dramatically. Rather, σ̂2
sk(·) = E

[
(Y (·)− Ŷ (· ; λ∗,κ∗))2

]
is an ensem-

ble average over all possible realizations Y (·). It reflects the “density of information” around each

prediction point s0 provided by the samples; i.e. the availability of information and the relative

importance of data sampled at a given set of positions (Wackernagel, ). The kriging variance

σ̂2
sk (·) should always be displayed alongside the corresponding prediction Ŷsk (·).

Kriging variance for sample design. Both because σ̂2
sk is both a spatial map of uncertainty, and

because it is independent of particular data, it is often used for sample design. That is, given a

statistical characterization of a site and the physics of phenomena expected to be studied there,

kriging variance is a tool for assessing the (expected) quality of an experiment. Given the scale and

dynamics of a nonstationary process, what is the optimal sample design? How many sensors are

needed to achieve a level of precision?

LLSE and MLE of a Gaussian process. The form of (.) is a familiar result from estimation the-

ory. The linear least squares estimator (LLSE), or equivalently, maximum likelihood estimator (MLE) of

Y (s0) if Y (·) is a Gaussian process and each ε(si) is an independent and identically distributed (i.i.d.)

Gaussian random variable.

Recall the assumptions made in order to use simple kriging: () the mean process is exactly

specified, and () the process Y (·) is stationary. These are rather strong conditions (particularly ())

and may not apply to natural processes. In the next section, we briefly discuss some extensions to

this method and their properties.

2.3 Other kriging predictors

As the name suggests, simple kriging is a (rather limited) member of a family of kriging predictors.

Detailed derivations of these predictors can be found in most geostatistics texts (e.g. Cressie ();

Chilès and Delfiner ()).
Chilès and Delfiner (see , p. ) for a thorough discussion of this phenomenon.
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2.3.1 Kriging with unknown mean

Kriging predictors come in a variety of “flavors,” each corresponding to a different set of assump-

tions. For instance, simple kriging assumes the process Y (·) is at least wide-sense stationary with

zero mean. (Equivalently, µ(·) is known exactly.) If µY (·) is not known, it can be modeled as a linear

combination of predictive variables (covariates).

Ordinary and universal kriging (see below) assume a mixed effects model for the process Y (·):

Y (s) = x(s)Tβ + δ(s), s ∈Ds, (.)

where x(s) ,
(
x1(s), ...,xp(s)

)T
is a vector of covariates (e.g. spatial basis functions, or other explana-

tory variables, such as elevation or temperature, which are known for many positions, and which

can justifiably be included in a linear model for the mean process EY (s) = x(s)Tβ (see Zimmerman

and Stein, , p. )), β ,
(
β1, ...,βp

)T
is a vector of unknown fixed effect parameters, and δ(s) is

the random effect, a zero-mean random process with covariance function CY (u,v).

The vector β can be seen as an unknown trend parameter and fit to the data, for instance by

ordinary least squares (ols): β̂ = (XTX)−1XTZ, where X = (x(s1),x(s2), . . . ,x(sm))T is an m× p matrix of

covariates at s. The delineation between fixed effect and random effect is ambiguous. The random

effect is usually interpreted as covering small-scale variation while the fixed effect represents large-

scale trends.

Ordinary kriging

Suppose the mean is an unknown constant µ. The ordinary kriging predictor (OK) is the BLUP that

minimizes mean-square prediction error (.). Its derivation is very similar to simple kriging (SK),

except that the unbiased constraint must be explicitly included. That is,

E
[
Ŷok −Y

]
= E

[
λTZ −µY

]
=

m∑
i=1

λiµ−µ = 0

m∑
i=1

λi = 1.

The ordinary kriging predictor is given by

Ŷok(s0) = µ̂GLS + cY (s0)TC−1
Z (Z − µ̂GLS1) , (.)





where µ̂GLS = (1TC−1
Z Z)/(1TC−1

Z 1) is the generalized least squares (gls) estimator of µ, and 1 is a vector

of ones. The associated ordinary kriging variance

σ2
ok(s0) = CY (s0,s0)− cY (s0)TC−1

Z cY (s0) +
(
1− 1TC−1

Z cY (s0)
)2
/(1TC−1

Z 1) (.)

has an additional term compared to (.), reflecting additional uncertainty after estimating the

mean.

Universal kriging

Universal kriging generalizes both simple and ordinary kriging. In terms of the mixed effect model

(.), it fits a higher-order trend to the data. In general, the universal kriging predictor is

Ŷuk(s0) = x(s0)Tβ̂
GLS

+ cY (s0)TC−1
Z

(
Z −Xβ̂

GLS

)
, (.)

where β̂
GLS

,
(
XTC−1

Z X
)−1

XTC−1
Z Z is the generalized least-squares estimator of β, x(s) is a p × 1

vector of covariates for position s, and X = (x(s1), . . . ,x(sm))T is an m× p matrix of covariates at the

data positions. For instance, using coordinates {si} of the data, or polynomials of those coordinates.

If si = (xi , yi),

X =


1 x1 y1 x2

1 x1y1 y2
1

1 x2 y2 x2
2 x2y2 y2

2
...

...
...

...
...

...
1 xm ym x2

m xmym y2
m

 ,
and p = 6. The associated universal kriging variance is

σ2
uk(s0) = CY (s0,s0) − cY (s0)TC−1

Z cY (s0)

+
(
x (s0) − XTC−1

Z cY (s0)
)T (

XTC−1
Z X

)−1 (
x (s0) − XTC−1

Z cY (s0)
)
. (.)

Again, the final term reflects additional uncertainty due to having estimated the trend param-

eters from the same data.

2.4 Geostatistical Model Selection and Parameter Estimation

Classical geostatistical modeling involves generating summary statistics of the sample to assess

spatial uncertainty. This is commonly expressed in the form of a structure function, or variogram, a

function describing the decorrelation of the process Y (·) with distance. This is often an exploratory

process, in which the analyst makes decisions regarding shape, scale, and complexity that affect the
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predictive power of the model, perhaps also bringing a priori considerations to bear in interpreting

the model.

2.4.1 Semivariogram

The spatial dependence of a wide-sense stationary (WSS) random process Y (·) is summarized by a

(constant) mean function E[Y (s)] = µY ∀s ∈ Ds and a covariance function which depends only on

lag h

CY (h) = Cov(Y (s + h), Y (s)) ∀s, s + h ∈Ds,

which typically characterizes the distance decay expressed in the First Law of Geography. A large

class of spatial processes (at least approximately) satisfy these properties. Additionally, a constant-

mean r.p. is said to be intrinsically stationary if its increments are WSS, that is, the difference of

h-displaced variables varies in a way that depends only on h:

Var(Y (s + h)−Y (s)) , 2γY (h), ∀ s, s + h ∈Ds. (.)

The quantity 2γY is called the variogram of Y ; (γY is the semivariogram). If CY (h) describes the

distance decay of correlation, 2γY (h) typically embodies the decorrelation of Y with itself as a

function of distance between points. Compare the two panels of Figure ·. Both plots convey the

same information about some r.p. Y (·). But the semivariogram increases to a maximum decorrela-

tion as distance h increases, while the covariance function diminishes to zero as h→∞. (Note that,

by definition, γ(0) ≡ 0.)

The set of intrinsically stationary processes can be shown to include the set of WSS processes

(e.g. Cressie and Wikle, , p. ). Indeed, any process with a stationary covariance function

also has a stationary semivariogram through the identity

γY (h) = CY (0)−CY (h), ∀ h ∈ Rd . (.)

The reverse is not true. Many intrinsically stationary processes have no WSS counterpart. The

semivariogram is therefore the more general second-order moment.

For example, the Wiener process {W (s) : s ≥ 0} has variogram 2γ(h) = −|h|, but Cov(W (s),W (u)) = min(s,u), which is not
a function of |s −u| (Cressie and Wikle, ).
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Nonstationary processes

So far, we have mostly considered stationary processes. Such models have the advantage that data

can be reasonably gathered from throughout the domain Ds and combined. This is important

for parameter fitting, but it is not a requirement for analysis or prediction. Kriging can also be

performed with nonstationary processes. The nonstationary forms of of the covariance function

and variogram are

CY (u,v) , Cov(Y (u,Y (v)), u, v ∈Ds

and

2γY (u,v) , Var(Y (u)−Y (v)), u, v ∈Ds.

A more general form of identity (.) also exists:

2γY (u,v) = CY (u,u) +CY (v,v)− 2CY (u,v), u, v ∈Ds.

Isotropy

Isotropy is another simplifying assumption that hardly occurs in the real world. Isotropic processes

are invariant to rotation about the origin. An isotropic semivariogram or covariance function can

be expressed as 2γ(h) or CY (h) where h = ‖h‖. Many anisotropic processes can be accommodated

by transforming the geometry so that

γ(s + h,s) = γiso(‖Ah‖),

where A is a transformation matrix. Such a process is said to be geometrically anisotropic. (See

also Chilès and Delfiner, , pp.–)

2.4.2 Fitting variogram parameters

Kriging is widely used for predicting natural processes. Its performance depends on the quality

of the process model. Simple kriging is the optimal predictor when the mean and covariance are

perfectly known. Other kriging predictors relax this requirement, permitting drift/trend regres-

sion, lending flexibility to the solution at the expense of increased uncertainty. Still, an appropriate

model is needed.

In classical geostatistics, modeling is carried out for a given data set through a combination

of exploratory data analysis and automatic parameter estimation, collectively called variography.
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Figure 2·1: Stationary semivariogram and covariance function with canonical geostatistical pa-
rameters labeled. Both functions describe how a random process decorrelates with distance.
The parameter names reflect their provenance in the mining literature.

The process may involve a human modeler iterating through the following stages:

. Identify the locations of all data.

. Compute all pairwise square-differences
(
Z(si)−Z(sj )

)2
and plot a cloud of points versus

distance
∥∥∥si − sj

∥∥∥.

. Determine appropriate binning and compute a method-of-moments estimator, e.g.

2γ̂(h) =
1

|N (h)|

∑
N (h)

(
Z(si)−Z(sj )

)2
, h ∈ Rd , (.)

where N (h) is a bin near h and |N (h)| is the number of elements in the bin.

. Fit a variogram model.

The modeler selects a variogram model to fit. The selection may be based on the shape of the

point cloud in stage  above, or it may be motivated by the physics of the underlying process, or

it may be especially favored by the modeler. Variography thus involves a combination of objective

and subjective justification.

Spatial statistics inherits classes of variogram models from classical geostatistics, with parame-

ters relating to the shape, size, and magnitude of a random field. Some generic parameters, found

in most models, are described below. (See Figure · for an illustration.)
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Sill

Total process variance. The sill is the maximum level of decorrelation between any two points

Y (s1) and Y (s2). This is the asymptote in Figure ·(a). That is, the sill is limh→∞γY (h) or CY (0).

The variogram of an intrinsically stationary process need not be finite. In that case, identity

(.) indicates that such a process cannot be described by a covariance function. Every WSS

process has a bounded variogram, i.e. a finite process variance.

Range

The variogram describes the rate of decorrelation with distance. If Y (·) has a finite variance (sill),

this rate eventually levels off so that Var[Y (s2)−Y (s1)] = Var[Y (s3)−Y (s1)] if ‖(s2 − s1)‖ > a and

‖(s3 − s1)‖ > a. In other words, there is some distance a, the range, beyond which samples of Y (·)

are maximally decorrelated.

If the variogram reaches its maximum exactly, the range a is the distance at which this happens.

If it approaches the maximum asymptotically, then a is defined as the point at which the variogram

reaches some fraction of the sill, typically 95 %.

Nugget effect

While sill and range quantify long-range behavior, the nugget effect describes microscale variabil-

ity (i.e. smaller than the shortest intersample distance). The name reflects its origin in mining,

since the discovery of a “nugget” (an atypical sample) is not predicted by any neighboring mea-

surements.

By definition, γY (0) = 0. So if a nugget is present, it represents a discontinuity at h = 0. The

nugget effect is practically indistinguishable from white measurement noise, since both produce

measurements with no detectable small-scale correlation structure.

Differentiability

Stein () demonstrates the connection of short-lag behavior of γY (h) to mean-square differen-

tiability of Y (s). He argues that, among all variogram properties, optimal interpolation is most

sensitive to the behavior near the origin. While most geostatistical variogram models have this

property fixed implicitly a priori, the Matérn model includes a parameter (ν) that explicitly affects

mean-square differentiability. For this reason, Stein () also advocates using the Matérn model

exclusively, allowing the data to influence the smoothness of the prediction during the structural





analysis phase.

2.4.3 Which function should be fitted?

In principle, a method-of-moments covarinace function estimator Ĉ(h) could be constructed and

fit in much the same way as 2γ̂(h) in (.). However, Cressie (, pp. –) shows that the

variogram estimator is () unbiased when µY is constant, and () less biased than Ĉ(h) when Y (·)

posesses a trend. The crux of the covariance estimator is the necessity to first “plug in” an empirical

mean. The variogram estimator has no such requirement.

2.4.4 Sensitivity of kriging to semivariogram misspecification

Assume that Y (·) is stationary, and its semivariogram is known exactly. Then (.), (.), and

(.) are unbiased, minimum-mspe predictors.

In practice, the spatial structure is not known exactly, but is estimated from (usually imperfect)

observations. What effect does misspecification of the semivariogram have on the kriging predic-

tions?

Cressie (, pp. –) discusses this at some length. He concludes () that estimates of

the above parameters are biased, and () that the estimated semivariogram is more stable than the

estimated covariance function. Furthermore, () the kriging predictor is stable under misspecifi-

cation, but () the kriging variance suffers more dramatically, especially when biased parameter

estimates are used to compute it. He recommends various robust methods for both parameter

estimation and prediction.

Chilès and Delfiner (, pp.–) also acknowledge substituting an estimated variogram

(assumed known without error) into (.) or (.) fails to account for the total error. Diggle and

Ribeiro Jr. () motivate their Bayesian prediction by examining the sub-optimal performance

of such “plug-in” predictors.

Stein (), emphasizing the fact that short-range behavior has the most dramatic impact on

the predictor, recommends the Matèrn model exclusively, arguing that the flexibility provided by

the smoothness parameter ν likely conveys as much benefit as either multi-model trial-and-error or

sticking to a few pet models, especially if ν is estimated from the data. The author also shows that,

at least in the case of interpolation, as data become more closely-spaced, the prediction depends

less on the particular choice of semivariogram.

The consensus is apparent. At least in the case of interpolation, kriging is fairly robust to the





choice of predictive semivariogram. As long as the data can support it, even fairly large departures

from the truth may have little effect on the quality of the prediction. The corresponding uncertainty

estimate, on the other hand, is likely to be overly optimistic.

2.5 Simple Kriging and Conditional Simulation

The simple kriging predictor (.) is a weighted sum, a predictor at unobserved locations condi-

tioned on observations Z. Since it is a linear combination of data, it tends to exhibit less spatial

variability than a typical realization of Y (·). Rather, Ŷsk summarizes the behavior of random pro-

cesses matching the first- and second-order distributional properties of Y (·).

The kriging variance (.) is a non-conditional statistic (not a function of the data) and repre-

sents the minimized mspe of Ŷsk.

Smoothness and differentiability

For stationary processes, the behavior of the semivariogram near the origin is affects the high-

frequency part of the spectrum (power spectral density). Naturally then, the element of semivari-

ogram structure that most directly influences the smoothness or roughness of the random process

is that near the origin. The Matérn function takes four parameters θ = (σ2
0 ,φ,a,ν), the first three

correspond to the nugget, sill, and range (respectively); the fourth is a “smoothness” parameter. A

process with this type of covariance functions is bν − 1/2c-times differentiable (in the mean-square

sense).

Mean-square differentiability does not guarantee smooth realizations, though. The nugget ef-

fect parameter σ2
0 also influences short-lag behavior of the semivariogram, namely introducing a

discontinuity at the origin (Papritz and Stein, ). Thus, even very closely-spaced values y(s) and

y(s + δs) are not guaranteed to be strongly correlated, resulting in “rough” realizations y(·).

As for the kriging predictor, the short-lag behavior of the semivariogram determines the smooth-

ness of the predicted surface, particularly at the data sites. Three cases for the behavior of the

semivariogram near the origin:

Discontinuous Ŷ (·) is discontinuous at the data points.

Linear Ŷ (·) is continuous everywhere but not everywhere differentiable.

Parabolic Ŷ (·) is both continuous and differentiable everywere.
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It is often a goal of spatial prediction to “smooth” the measured surface. Some problems, though,

call for a process that reflects the spatial uncertainty of the process itself. In that case, it is possible

to simulate a realization of Y (·) that passes through the data points.

2.5.1 Conditional simulation

In the absense of noise, the kriging predictor is an exact interpolator: the predicted function passes

through all measured points. But the predicted function does not represent a realization of the

random process. In image processing terms, it lacks the texture of a realization of Y (·). In some

situations (for instance, estimating the length of a curve on the predicted surface), it is better to

generate one or more conditional simulations, realizations of a random process that both a) exhibit

the statistical properties assumed by the predictor and b) honor the data.

To generate such a simulation from known data and a known semivariogram, begin with the

kriging predictor,

ŷsk(s;Z) = µY (s) + cY (s)TC−1
Z Z. (.)

Let us regard the data Z as a random vector. Then (.) is a random function, so for now let us

use the upper-case convention and drop the hat indicating a predictor. Now consider the following

decomposition:

Y (s) = Ysk(s;Z)︸   ︷︷   ︸
kriging prediction

+ Y (s)−Ysk(s;Z)︸            ︷︷            ︸
kriging residual

s ∈Ds. (.)

The components on the right-hand side of (.) are two independent Gaussian processes (GP s).

Once the data are specified to be Z = z, the kriging prediction is known and given by (.). The

kriging residual is unknown because Y (s) is unknown. But it can be simulated since µY (s) and

CY (h) are known. Consider a similar decomposition:

Y us(s) = Ŷ ussk (s) + Y us(s)−

µY (s) + cY (s)TC−1
Y


Y us(s1)

...
Y us(sm)


 , (.)

where Y us(·) is an unconditional simulation of Y (s), which is simulated both at s and at the sample

points {si , i = 1, . . . ,m}. Then, after generating a realization of yus(s) and computing ŷussk (s), we can

simulate the kriging residual and substitute it in (.):

ycs(s;z) = ŷsk(s;z) + yus(s)− ŷussk (s) (.)
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Figure 2·2: Behavior near the origin of the Matérn semivariogram for different values of ν. A
processes with any of these covariance functions has mean-square differentiability bν−1/2c.

Note that only the first term, the kriging predictor, actually depends on the data z. The pro-

cedure above generates a conditional simulation. Since Ŷsk is an exact interpolator, at any sample

point sα we have ŷussk (sα) = yus(sα). Also, ŷsk(sα ;z) + yus(s) = y(sα , the actual measurement at sα .

Therefore, ycs(sα ;z) = y(sα .

2.5.2 Exploration of variogram parameters on kriging prediction and simulations

The following examples begin with a known variogram, the Matérn model:

γ(h) = σ2
0 I(h , 0) + (σ2

η − σ2
0 )

(
1− 21−ν

Γ (ν)

(
2
√
νh

a

)ν
Kν

(
2
√
νh

a

))
, (.)

where Γ (·) is the Gamma function and Kν(·) is a modified Bessel function of the first kind of order

ν. In the following examples, the Matérn model (.) is used to generate realizations of Y (s) on a

dense grid (nmesh= points (-D), × (-D)). Each process is randomly point-sampled using

an additive white noise model. We now examine the effects of some of the variogram parameters

on both the realizations and the simple kriging predictions and variances.

Effect of differentiability parameter ν

The Matérn class of covariance functions is very flexible in that the parameter ν directly affects

the differentiability of realizations generated using the model. As Stein () shows, a process

with one of this family of covariance functions is bν−1/2c-times differentiable (in the mean-square
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(b) ν = 3/2

0 1 2 3 4 5
Position s

3

2

1

0

1

2

y(
s)

True:  nug=0.000, sill=1.00, scale=1.00, nu=2.50, nvar=0.00
Model: nug=0.000, sill=1.00, scale=1.00, nu=2.50, nvar=0.00

True y(s)
Data z(s)
Simple ŷsk
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Figure 2·3: Effect of Matérn “smoothness” (differentiability) parameter ν. Realizations of a
zero-mean Gaussian process with Matérn covariance for various values of the smoothness
parameter ν. Solid line: a sample path of the process Y (s). Dashed line: simple kriging
predictor with 1σ (68%) confidence intervals (shaded region). Thin lines (d only): conditional
simulations better representing the behavior of individual realizations of Y (s) (for ν = 5/2
only).

sense).

Figure · compares typical examples of random paths generated by a Gaussian process with

zero mean and Matérn covariance function (simulated on a -point grid). (The random seed used

to generate these paths was consistent between runs, and all other covariance parameters were held

constant; hence the general similarity between sample paths.)

The mean-square differentiability of the process Y (s) is governed by the parameter ν, and the

prediction surface Ŷsk(s) is differentiable only for processes with variograms that are parabolic near

the origin (Papritz and Stein, ) (which is also a function of ν). Note the (non-differentiable)

cusp-like features at the sample points in Figure ·a (ν = 1
2 ). By contrast, the predictors in Fig-

ures ·b&c (ν = 3/2 and 5/2, respectively) are clearly at least once differentiable.

Figure ·d illustrates a few conditional simulations ycs. It is less important whether each sim-
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ulation approximates the underlying process more closely than the kriging predictor Ŷsk at a given

position than to observe the behavior of both Ŷsk(·) and ycs(·) between sample points (e.g. note

the behavior of simulations for s ∈ (1,2) and s ∈ (4,5)). The simulations capture the smoothness

properties of the underlying process. This is examined in more detail below.

Another feature to notice in all the examples to follow is the behavior of the mspe σ̂2
sk(s) in

relation to the sample points si , i = 1, . . . ,m. The kriging variance at position s—plotted here as ±1σ

confidence intervals about Ŷsk—is a function of the distances {|s− si | , i = 1, . . . ,m}. At each sample

point si , the prediction error reaches its minimum value. Between sample points, σ̂2
sk increases

relative to () the distance between adjacent points, () the clustering of nearby points, and () the

shape and size properties of γY (·).

Outside the sample domain (here, for s ' 4), σ̂2
sk increases up to the sill while Ŷsk shrinks to

the mean path (zero in this case). This is a feature of WSS processes: beyond some distance a

from the last observation, Y (·) (and indeed Y (·)|Z) is maximally decorrelated. This is an important

theoretical distinction between interpolation and extrapolation. It is also an important practical

difference between prediction in the spatial sense (non-causal interpolation using samples within

an d-dimensional region of interest) and the temporal sense (extrapolation from an ordered, one-

dimensional sequence with little or no foreknowledge of what lies beyond the present), since the

latter involves extrapolation while the former is interpolation. Stein () argues in detail why

interpolation can usually be assumed the goal of spatial prediction.

Nugget effect

The nugget effect is so named because it models the effect of atypical deposits within a mining

survey. Such “nuggets” of high-grade ore are decorrelated from their neighbors (even at arbitrarily

small distances), so the nugget effect is represented as a delta function at the origin of the correla-

tion function, or for the semivariogram a constant function at all lags (except at the origin, since by

definition γ(0) = 0). In either case, a discontinuity at the origin models total decorrelation at the

micro-scale (i.e. below the shortest intersample distance). (See Figure ·.)

A “nugget” could turn up at any position within the prediction domain, thereby increasing the

prediction error at that point. As a constant component of decorrelation (except at the origin), the

nugget effect increases the kriging variance for all s ∈ Ds \ {si | i = 1, . . . ,m} (i.e. all non-sampled

points). Note that the expected prediction error equals zero where s = si , i = 1 . . . ,m. From the

viewpoint of classical geostatistics, which did not always account for measurement error, kriging
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(c) ν = 5/2

0 1 2 3 4 5
Position s

3

2

1

0

1

2

y(
s)

True:  nug=0.050, sill=1.00, scale=1.00, nu=2.50, nvar=0.00
Model: nug=0.050, sill=1.00, scale=1.00, nu=2.50, nvar=0.00

True y(s)
Data z(s)
Simple ŷsk
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Figure 2·4: Nugget effect parameter σ2
0 . Realizations of zero-mean Gaussian processes with

Matérn covariance. Top: ν = 3/2. Bottom: ν = 5/2. Left: no nugget effect. Right: nugget
σ2

0 = 0.05.

(in the noiseless case) is an exact interpolator of the data (i.e. Ŷsk(si) ≡ Z(si)), so the “prediction”

error is nil wherever the process has been sampled directly.

Effect of measurement error

Measurement error has a similar effect but operates by a different mechanism. If data are corrupted

with white noise, then neighboring measurements are decorrelated, even arbitrary close ones. So,

as with the nugget effect, this is expressed as an added component of uncertainty in the kriging

prediction error. However, this decorrelation “at arbitrarily close” distances extends also to the zero

distance. I.e., noisy measurements are (so to speak) decorrelated with themselves. More precisely,

since measurement error comprises a component of Z which is independent of Y (·) and i.i.d. with

variance σ2
ε , this is reflected in the kriging variance by a non-zero minimum at any sample point:

σ̂2
sk ≥ σ

2
ε for all s ∈ Ds including sampled locations. Consequently, the predictor Ŷsk(·) is not an

exact interpolator. It does not “honor the data.” Indeed, if the noise variance is appropriately

specified, it honors the uncertainty inherent in the data. This added level of uncertainty gives
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Ŷsk(·) more flexibility in fitting optimal kriging weights to the data. In the presence of noise, this

leads to a closer approximation of the particular sample path y(s) (see later section). In Figure ·,

this becomes apparent.

Conflation of nugget and noise

In the past, the distinction of nugget effect and measurement error has been a point of contention

between geostatisticians and mathematical statisticians. The difference between the two can be

subtle. Quite some effort has been spent clarifying both the theoretical and practical implications

of this difference. Matheron’s original kriging formulation does not account for noise. A common

workaround is to substitute a nugget effect of size σ2
ε , since their effects are similar. While Math-

eron’s orginal formulation attempts to predict unobserved data from observed data, Cressie ()

argues that the underlying process Y (·) is usually the more scientifically relevant quantity to pre-

dict. Diggle and Ribeiro Jr. (, p. ) argue that, while the effect is similar, the difference

matters in practice since, if a large isolated datum is encountered, the choice determines whether

it should be interpolated (nugget) or not (noise).

Indeed, the uncorrelated nature of most models suggests that Y (·) should be smoother than

Z (= Y + ηε). Depending on the scale of the covariance model and the fidelity of the data, the

interpolating property of kriging explains why actual prediction error (i.e. not in the mean-square

sense) propagates over a wider area as the predictor attempts to overfit noisy data. (See figure.)

Furthermore, the function mapping process Y (·) to data Z is often more complicated than point

or block sampling (e.g. nonlinear, Z = g(Y )). Inverting these transformations is a discipline unto

itself, with solutions that are unstable, non-unique, or nonexistant! In general, such problems are

very sensitive to noise. Predicting data before inverting is a poor strategy. Instead of kriging, which

is encumbered with linearity and Gaussianity assumptions, it is better in such cases to incorporate

the full measurement model (including both noise and the (possibly nonlinear) observation func-

tion f (Y )) into a predictor that operates directly on the data. (Kriging is a special case of such

predictors, in which Y is a Gaussian process, with identity g(·), and ε AWGN.)

The nugget effect is a property of the process itself, whereas measurement error is a function of

the instrument and other environmental factors. Assuming no noise, repeated samples of a nugget

at exactly the same position would yield identical measurements (being a realization of a random

process, and thus a deterministic function of position). Noise adds an inherent level of uncertainty

that can only be estimated through repeated sampling. (Perhaps the confusion stems from the fact
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Figure 2·5: Nugget effect (left) versus measurement error (right).
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Figure 2·6: Nugget effect (left) versus measurement error (right).

that mining samples are destructive and impossible to truly repeat.)

Figure · compares the results of modeling a nugget effect and additive measurement error.

The difference is made obvious here since the measurements (dots) are so much more sparse than

the simulated true process (bold line). Note that the underlying sample path is “rougher” when a

nugget effect is included. (These are the “nuggets!”).

Figure · also compares nugget effect to measurement error in the case of conditional simula-

tions.

Effect of semivariogram misspecification

Simple kriging relies on very strong assumptions regarding the mean and covariance functions.

Figures · and ·, respectively, exemplify the kinds of prediction errors that occur when a nugget

effect or noise is misspecified in the semivariogram model.

From Figures ·b and ·b, it would seem wiser to overestimate either noise or nugget effect.
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(c) Same as (b).
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(f) Same as (e).

Figure 2·7: Nugget mismatch. Noiseless examples. Kriging with correct model (left) versus
incorrect model (right).

This is reflected in formula (.), through CZ and in the figures by a widening of the confidence in-

tervals. (This is formally equivalent to shrinkage estimation, damped least squares, and Tikhonov

regularization.) Whereas, underestimating either noise or nugget based on sparse data causes the

predictor to overfit and oscillate far outside the process’ range (Figures ·e and ·e).

Overestimating the nugget effect results in conditional simulations which may be exceedingly

rough (though perfectly plausible, especially if the value of σ2
0 can be justified by external consid-

erations).

Which parameter to place more emphasis on depends on the goals of the prediction. All that

can be recommended generally are rules of thumb. These are conjecture based on this limited set

of tests, but they agree with the general recommendations laid out by Cressie and Wikle ()

and Stein ().

• If a smooth representation of the underlying process is desired, model all micro-scale vari-

ability as noise and use a kriging predictor.

• Use conditional simulations to get a better impression of the process’ spatial variability.
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sumes noise
σn = 0.25.
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(c) Same as (b)
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(f) Same as (e).

Figure 2·8: Noise model mismatch. In each panel, nugget effect σ2
0 = 0.0. Correct noise model

(left) versus incorrect model (right).

• Include a nugget effect only if it can be estimated accurately.

• For meaningful representations (i.e. smooth simulations) of Y (·), it is better to overestimate

noise than nugget.

• Be careful not to underestimate either parameter.

2.5.3 2D kriging example

The relevant statistics of Y (s) are assumed to vary depending only on the spatial coordinate s. This

includes but is not limited to the stationary case. And, when s has dimensionality greater than , it

includes both isotropic and anisotropic cases. However, we limit our scope to anisotropic processes

with γY (h) = γY (‖Ah‖), i.e. geometric anisotropy.

In Figure · a D Gaussian process is simulated with anisotropy matrix

A =
[
2.0 0
0 1.0

][
cos50 sin50
−sin50 cos50

]
.

The covariance function is Matérn type. (See figure caption for parameters.) One hundred obser-
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(a) Gaussian process realization (b) Simple kriging predictor

(c) Conditional simulation #1 (d) Conditional simulation #2

Figure 2·9: Kriging analysis of a Gaussian random process: Matérn covariance function pa-
rameters: Nugget: c20 = 0.05, Sill σ2

0 = 1.00, Scale θ = 1.00, Differentiability ν = 0.5, Noise
σ2
ε = 0.00, Anisotropy ratio: 2.0:1.0, Angle 50°.

vations are randomly sampled from this process (data represented by the color of dots in panel a).

The simple kriging predictor (b) is accompanied by the kriging variance. To draw an analogy to

the preceding D examples, the variance reaches its minimum at the sample positions. It grows

with distance from data points. Consequently, the arrangement of samples in space influences the

shapes of contours in (b).

Two conditional simulations (c) & (d) were generated independently. The data are also plot-

ted on these graphs for comparison. No noise was assumed in either the generative or predictive

models, so ycs(si) = y(si) for each simulation. The poorly-sampled regions, top center for instance,

exhibit the most variability among these simulations (and others not shown). Using (.) and the
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Table 2.1: Error statistics for the simulations and predictors in Figure 2·11.

Method RMSE MAE

Linear 0.362 0.251
Natural neighbor 0.338 0.241
Simple kriging 0.214 0.155
Cond. sim. 0.288 0.212

unbiasedness of ŷsk, the mean of a very large number of these simulations converges to (b).

2.5.4 3D kriging example

Finally, in Figure · mimics a D amisr example by sampling a D Gaussian process over an

11× 11 grid of beams radiating from the origin (not shown). The sampling interval along each

beam is 4.5 km.

The linear interpolator (b) is continuous but not differentiable, owing to sharp changes of slope

at the the edges of the Delaunay triangulation (consistent with Cressie, , p. ). The nat-

ural neighbor interpolator (c), another Delaunay-based method, is visually very similar to simple

kriging (d).

A simulation (e) of the process, using the same mean and covariance parameters (assumed

known), is conditioned by (d) to match the data.

The kriging variance (f) is minimized near the sample points, with contour lines following

the outline of the beams. The variance generally remains low within the sampled region (where

prediction corresponds to interpolation), and grows monotonically outside.
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(a) Gaussian process simulated on a 100× 100× 100 grid.

(a) Linear interpolation

Figure 2·11: Analysis of a random process in 3D. Matérn covariance parameters: Sill σ2
0 = 1.0,

Nugget c20 = 0.0, Differentiability ν = 1.5, Scale θ = 10, Anisotropy ratio 1.0 N/S : 1.0 E/W
: 0.8 z [i.e. slightly elongated vertically], 30 turning bands.The thin lines are sample points
along radar beams in an 11× 11 angular grid.



(b) Natural neighbor interpolation

(c) Simple kriging

Figure 2·11: (continuted) Natural neighbor interpolation and simple kriging.
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(d) Conditional simulation

(e) Kriging standard deviation

Figure 2·11: (continued) A simulation conditioned by (d). Within the sampling region, the simple
kriging variance forms contours around the samples (here an 11× 11 grid of beams), with
its minimum value at the sample location. Outside the sample grid, the variance increases
monotonically to its maximum (the sill, if it exists).



Chapter 3

Three-dimensional ISR Imaging

It is beyond the tool, and by virtue of it, that we rediscover nature, an experience
that we share with gardeners, sailors, or poets.

Terre des Hommes
Antoine de Saint-Exupéry

(Paraphrased from a translation by Chilès and Delfiner ().)

The ionosphere is a highly dynamic system that exhibits a wide variety of structured features

in response to forces from the magnetosphere. (At high latitudes, the striking patterns and colors

of the aurorae are perhaps the most immediate and familiar effects.) As technology advances and

new instruments come online, it is worth considering the relative advantages these convey and

additional context they provide. Observations that resolve both the structure and dynamics of the

ionosphere form a key component in understanding our space environment.

In this chapter, we explore the problem of direct volumetric imaging of the ionosphere via

densely-sampled multi-beam incoherent scatter radar (isr) imaging. We begin with a visualization

application, applying first linear interpolation and then optimal spatial prediction (or “kriging”)

to determine the values between measured points (also known as interpolation). Interpolation is

crucial for visualization, which is in turn an important component of modern science.

Visualization, though, is only one end to which spatial prediction is a means. Consider also

the problem of comparing data from different instruments. If two instruments measure a common

region, each with its own sample pattern, their measurements may need to be aligned before ana-

lyzing jointly. One solution is to “edit” the samples of one instrument and assume the positions are

coincident. Depending on the process and measurement properties, and on the type of analysis,

the error incurred by doing so may be acceptable. Another solution is interpolation, which can also

be a source of error.

A more subtle problem occurs, for instance, when samples Y1 and Y2 are measured with dif-

ferent supports. That is, Y1 represents an aggregate measure over some region D1, and Y2 is an
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aggregate measure over some other region D2. If the regions overlap, there will be a statistical

correlation between the two measurements. Furthermore, the correlation may behave unexpect-

edly, depending on the individual distributions underlying the aggregated regions! Any inference

involving both data sets must model that correlation.

In a case study, we demonstrate how spatially distributed radar measurements can be compared

directly to optical measurements obtained during an active aurora. We also begin to examine the

radar’s time-resolution by measuring the response of the ionosphere to an enhanced ionization

feature.

3.1 Incoherent scatter radar

3.1.1 Radar

Radar is a remote sensing technique used to observe targets that can reflect electromagnetic radia-

tion. Using a carrier wave frequency anywhere from ∼ 5 MHz to several GHz, a radar transmitter

sends a pulse toward a target, and a receiver observes the reflected signal. If the transmitter Tx and

receiver Rx are collocated, the radar is monostatic. Otherwise, it is bistatic or multistatic.

The idealized assumption of hard-target radar (such as aircraft tracking) is that the target occu-

pies the space of a point (so that its radar characteristic is isotropic), but is the only body reflecting

the incident radar pulse. From the receiver’s point of view, a target with nonzero volume can be

modeled as the composition of many point targets. The radar pulse signal, as it travels from Tx to

the target to Rx, loses power (through propagation, line loss, etc.). The various sources of loss are

summarized in the radar equation:

Pr = Pt
( G

4πr2

)( σ

4πr2

)(Gλ2

4π

)(
tot

)(1
L

)
, (.)

where r is range, Pr is the received power, Pt is the average transmitted power, G is the antenna

gain (counted twice for transmission and receiving), λ2/4π accounts for the effective area of the

receiving antenna, L accounts for various losses, tot is the dwell time, and σ is the radar cross-

section (r.c.s.) of the target, measured in units of area, and representing the ability of the target to

redirect power toward the receiving antenna. Assuming white thermal noise, which is limited by

Depending on the context, this is known as Simpson’s paradox, the ecological fallacy, or the Modifiable Areal Unit
Problem (MAUP).
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the receiver bandwidth B, the signal-to-noise ratio (SNR) out of the receiver

SNR =
Pr
Pn
∝ PtG

2λ2σ

(4π)3kBTnBLr4 , (.)

where Tn is the noise temperature and kB is Boltzmann’s constant.

When the target fills the volume of the beam (as in plasma and ionospheric experiments), this

is called soft-target radar. Here, the data represent an aggregate of many differential volume ele-

ments within the beam. This aggregate behavior is described in terms of the effect of the plasma

spectrum on the received power signal. After computing a spectrum of the returned pulses, it is

possible to infer several properties of the plasma within the scattering volume.

Since the target fills the beam, its volume (and hence the total number of scatterers) expands

with the beam (at the same rate, ∝ 4πr2) as it propagates. So for incoherent scatter, the radar

equation is

Pr ∝
Ptτp

4πr2L

Ne(r)σe
(1 + k2λ2

D )(1 + k2λ2
D + Te/Ti)

, (.)

where τp is the duration of the transmitted pulse, σe is the radar cross section of a single electron.

The salient factors which differ between equations (.) and (.) is () ne, the electron density in

the numerator, and () r2 in the denominator rather than r4. Likewise the SNR, which, considering

mainly thermal white noise Pn = kBTnB, becomes

SNR ∝
Ptτp

4πr2LkBTnB

Ne(r)σe
(1 + k2λ2

D .)(1 + k2λ2
D + Te/Ti)

. (.)

Radar resolution considerations

There are four resolution requirements that determine the parameters of an ionospheric radar

experiment. The following are adapted from Lehtinen ():

Spatial resolution Determined by the width of a radar pulse, since a pulse occupies the space of

cτ
2 m, where τ is the pulse length (in seconds), and c is the speed of light (in m s−1). This must

be sufficient to capture the spatial features of the target.

Lag (or frequency) resolution Higher resolution requires higher bandwidth. Limited by the cor-

relation time of the target. For overspread targets like the ionosphere, the time during which

the scattered signal does not change significantly.

Time resolution The interpulse period (IPP) is the shortest interval over which independent mea-

surements are recorded. Additional integration multiplies this interval. The target should





not be expected to change significantly during this time.

Accuracy Accuracy is balanced with the rest of these requirements. For instance, a longer inte-

gration time improves data fidelity at the expense of time resolution. Spatial resolution is

improved with a shorter pulse, but this requires a wider bandwidth receiver filter, which

admits more noise.

There are also two extent requirements. The range extent should be long enough (without

ambiguous reflections) to resolve the range of interest. This is governed by the IPP via T ≥ 2L/c.

The lag extent must be broad enough to estimate the relevant Doppler characteristics of the target.

Thus the sample time T ≤ target bandwidth.

3.1.2 Incoherent Scatter Radar

Incoherent scatter radar is used to measure the ionosphere. This is accomplished by transmitting

a pulse with frequency well beyond the plasma frequency ωp , (Ne2/ε0m)−1/2 through the iono-

sphere. This excites the electrons along the beam path, which begin oscillating with the frequency

of the radar signal (a phenomenon called Thomson scatter). Each electron acts as a dipole radia-

tor. Randomly oriented and under random thermal motion, the backscattered signal arrives at the

receiver.

The radar signal, after backscatter, obtains the temporally correlated signature of the plasma

(or, equivalently, its power spectrum). The plasma acf embodies many properties of the scatter-

ing volume. Soon, a series of papers appeared describing accurately and in detail the spectrum

obtained in isr measurements.

The ionosphere is an overspread target, i.e. delay and Doppler cannot simultaneously be re-

solved (the correlation time of the plasma is much shorter than the IPP. So, rather than standard

Doppler analysis, with similar bandwidths of the transmitter and receiver, it is necessary to over-

sample the received signal and construct a correlation function within a single IPP.

The simplest way to do this is to transmit a single pulse (long pulse, LP) while the receiver over-

samples the return signal z(t), then compute lag products z(t)z∗(t − τ), forming an estimate of the

plasma acf. This can be done by sending more than one short pulse and receiving at correspond-

ing lags z(t), z(t − τ), z(t −2τ), . . . (Farley, ), or by using modulating a long pulse: coded pulses

In the original formulation, Gordon () expected a broad Gaussian spectrum, corresponding to free thermal motion.
The first experiments by Bowles () showed the spectrum was orders of magnitude narrower. The electrons were indeed
the scattering species (the magnitude of the spectrum confirmed this), but they were bound to the heavier ions, the Debye
shielding effect limiting their reaction to the radar E-field, and damping the hypothesized Doppler spreading.
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(Gray and Farley, ) or an alternating sequence of coded pulses (Sulzer, ; Lehtinen et al.,

). The goal, in any case, is to concentrate the signal power over a short region (to improve

range resolution) while retaining the energy of a long pulse (proportional to the pulse length τ).

The plasma spectrum

ISR theory was originally developed independently by Fejer (), Salpeter (), Dougherty

and Farley (, ), Farley et al. (), and Hagfors (). Reviews of ionospheric scatter

methods have been presented by Evans (), Farley (), Beynon and Williams (), and

Hagfors (). The exposition of Kudeki and Milla () may be helpful to engineers new to this

field.

The goal of incoherent scatter radar is to infer the quantitative characteristics of the ionosphere

by studying the power spectum of the scattered signal. This is obtained by sampling the returned

signal, forming an empirical autocorrelation function, and fitting to an analytic function. The

shape of this function is largely controlled by ion dynamics, even though it is the electrons that

scatter the radar pulse.

The driving phenomenon of ISR is Thomson scattering. The radar electric field incident on an

electron at position r is (in phasor form)

Ei = Eo(r)e−jk0r r̂ ,

where ko =ωo/c is the wavenumber of the radar operating at frequencyωo. Eo(r) is a slowly-varying

function of r. This electron is accelerated by the force −qEi and begins to reradiate at the operating

frequency of the radar, essentially acting as a Hertzian dipole. The re-radiated electric field phasor

is

Es = −
q2µ0 sinδ

4πrme
Eie
−jkor

= − re
r

sinδEie
−jkor ,

where re = q2µ0
4πme

= 2.82× 10−15 m is the classical electron radius, and δ is the polarization angle

(which for linear polarization is the angle between Ei and rs. The magnitude of Ei can be considered

approximately constant at E0 throughout the scattering volume.

Consider a monostatic radar (single antenna), i.e. the backscatter case such that δ = π/2, sin(δ) =
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1, and the Bragg wave vector is k = −2ko r̂. The backscattered field due to a single electron is

Es = − re
r
Eie
−jkor = − re

r
Eo(r)e−j2kor .

The total field is the superposition of contributions from individual electons over the subvolume

∆V :

Es = −
N0∆V∑
p=1

re
rp
Eo,pe

−j2korp ≈ − re
r
Eo

N0∆V∑
p=1

ejk·rp .

Note that the approximation states rp ≈ r in the fraction, but not in the exponent.

The scattered wave phasor becomes

Es(t) = − re
r
Ei

N0∆V∑
p=1

ejk·rp(t−r/c), (.)

where the r/c term accounts for the propagation delay from the radar to r. Now the trajectories of

individual particles rp(t) come into play. The autocorrelation function (acf) of the scattered field is

〈E∗s (t)Es(t + τ)〉 =
r2
e

r2 |Ei |
2
N0∆V∑
p=1

N0∆V∑
q=1

〈
ejk·[rq(t+τ−r/c)−rp(t−r/c)]

〉
. (.)

If we can regard all the electrons as statistically independent (p , q), then the acf reduces to

〈E∗s (t)Es(t + τ)〉 =
r2
e

r2 |Ei |
2N0∆V

〈
ejk·∆r

〉
, (.)

where ∆r = rq (t + τ − r/c) − rq (t − r/c) represent particle displacements over τ . This leads to the

broadband result originally expected by Gordon. Electrons are not independent, and this form

does not account for macroscopic effects.

At this point it is useful to recognize that the summation that appears in (.) can be rewritten

ne (k, t) =
N0∆V∑
p=1

ejk·rp(t),

which, in this form, is meant to evoke a D spatial Fourier transform of

ne (r, t) =
N0∆V∑
p=1

δ(rp(t).
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Taking the Fourier transform of (.),

〈
|Es(ω)|2

〉
=

∫
dτe−jωτ 〈E∗s (t)Es(t + τ)〉

=
r2
e

r2 |Ei |
2
〈
|ne (k,ω)|2

〉
∆V ,

where (.) implies

〈
|ne (k,ω)|2

〉
=

U
dτe−jωτ

1
∆V

N0∆V∑
p=1

N0∆V∑
q=1

〈
e−jk·rp(t−r/c)ejk·rp(t−r/c+τ)

〉
. (.)

For independent electrons, this simplifies to

〈
|nte (k,ω)|2

〉
,N0

U
dτe−jωτ

〈
ejk·∆r

〉
. (.)

Although it is not a complete description of the plasma, the correct plasma spectrum is a linear

combination of (.) and a similar expression for the ions.

Collective effects in a plasma are governed by quasi-static macroscopic currents, forced by po-

larization fields produced by the mismatch of thermally-driven fluctuations nte(k, t) and nti(k, t).

Kudeki and Milla () draw analogies to Kirkhoff’s current law and dissipation-fluctuation within

an equivalent electric circuit. This leads to the following system of equations, which comprise a

general framework for ionospheric isr, all in terms of
〈
ejk·rs

〉
, the single-species acf.

• Plasma acf: 〈
|ne (k,ω)|2

〉
=
|jωε0 + σi |2

〈
|nte (k,ω)|2

〉
|jωε0 + σe + σi |2

+
|σe |2

〈
|nti (k,ω)|2

〉
|jωε0 + σe + σi |2

(.)

• Constraint on thermal single-species acfs〈
|nts (k,ω)|2

〉
N0

= 2Re {Js(ωs)}

• Constraint on conductivities for each species

σs(k,ω)
jωε0

=
1− jωsJs(ωs)

k2D2
s

,

where ωs , ω − k ·Vs a Doppler-shifted frequency due to the mean velocity Vs of species s

and ds , (ε0kBTs/N0q
2)1/2 is the Debye length.
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Figure 3·1: Effects of plasma parameters on ISR spectrum.

Also, in the last two equations, the Gordeyev integral is

Js(ω) ,

∞U
0

dτe−jωτ
〈
ejk·∆rs

〉
.

The formula (.) is quite general, so long as the appropriate single particle acf is determined.

For instance, in a collisionless and nonmagnetized plasma, the Maxwellian pdf is appropriate. The

spectrum then has the double-humped form of Figure ·.

To demonstrate the effect of various plasma parameters on the spectrum shape, Figure · con-

sists of spectra evaluated with a variety of plasma parameters. In these plots, the radar frequecy

is . MHz and (except where indicated) the ion mass is . amu (a mixture of O+
2 and NO+

It is also assumed that the medium is stationary and uniform over the scattering volume
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Figure 3·2: Summary of effects of plasma parameters on ISR spectrum.

ions). Figure ·a shows the effect of ion temperature Ti with a constant ratio Te/Ti = 1 and zero

frequency of ion-neutral collisions (νin). With increasing thermal excitation, the ion displacements

grow larger, broadening the spectrum.

Figure ·b shows the effect of varying the electron-ion temperature ratio while keeping the

ion temperature constant. As above, an increase in electron temperature broadens the spectrum.

However as each ion line moves outward, its broadening is less indicating weaker attenuation of the

ion-acoustic wave. Thus the “humps” are narrower and the minimum deeper than in the spectrum

with the same width in the top panel.

Figure ·c shows the effect of ion-neutral collisions at fixed temperatures. While the width re-

mains fixed, the minimum becomes shallower with increasing collision frequency vνin until it com-

pletely disappears and the spectrum becomes Lorentzian. This change is due to further damping

of ion acoustic waves and is characteristic of the denser D-region, where the ion-neutral collision

frequency is high.

Temperature and mass affect the spectrum in similar ways, and their influence can be ambigu-

ous (Figure ·d). Four different spectra are shown, calculated for heavy (mixture of O+
2 and NO+,

mass . amu) and light (O+, mass  amu) ions. The narrow spectrum plotted with a continuous

line corresponds to heavy ions at Ti = 300 K, and the wide spectrum plotted with a dashed line

corresponds to light ions at the same temperature. The wide, continuous spectrum is for heavy

ions at a temperature of 30 × 300/16 = 572 K; the narrow, dashed spectrum is for light ions at a

temperature of 16×300/30.5 = 157 K. The result shows that the two spectrum pairs nearly overlap

The Lorentzian shape is a/(1 + bω2), where a and b are constants.
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and it is the ratio Ti /mi that determines the spectrum width. Figure · gives a summary of the

effects described above.

In principle, it should be possible to determine all the above parameters (ion temperature, tem-

perature ratio, collision frequency, and the concentration ratio of ions with different masses) from

the shape of the observed spectrum. However, ambiguities such as those in Figure ·d make the

task more difficult. In particular, the effects of ion temperature and mass are difficult to determine

simultaneously. This problem arises in the F-region, where a transition occurs from heavy molec-

ular ions to light atomic ions. In practice, the concentration ratios come from a model so that mass

is essentially removed from the inversion.

A second difficulty is associated with collision frequency. When the spectrum is double-humped

(i.e., in the E- and F-regions), it is difficult to distinguish between the effects of temperature ratio

and collision frequency (Figures ·b & ·c). The usual solution is to assume Te/Ti = 1 in the lower

E-region (below  km), and to set νin = 0 at greater heights.

In the D-region, the rate of collisions increases dramatically, and the spectrum approaches a

Lorentzian shape (i.e. single peak). This shape, being governed by two parameters, only allows the

determination of temperature ratio and collision frequency.

Two other parameters can be determined from the ion lines: electron density and bulk ion

velocity. The electron density ne affects the magnitude of the backscattered signal. Thus power

measurements can be converted to ne using the radar equation.

If the ionospheric plasma is in motion, the total spectrum is shifted and a single component of

the plasma bulk velocity can be determined from this Doppler shift. In the case of backscatter, the

frequency shift gives the line-of-sight ion velocity. In the case of a bistatic configuration, it resolves

the component along the bisector.

The ISR signal

Because of the random thermal motion of the electrons, the scattered signal is a random variable.

At the receiver, the scattered signal is also corrupted by sky noise and thermal noise within the

instrument:

PS+N = S2 +N2
sky +N2

sys.

To reduce the variance of the random fluctuations, K pulses are integrated, so that PS+N = 1
K

∑
k Pk =

1
K

∑
k I

2
k +Q2

k .

To distinguish the scattered signal from noise, one set of observations must be devoted to mea-
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Overspread Case

Figure 3·3: The ISR measurement process (monostatic, long pulse). A pulse is transmitted of
duration τ , and the receiver oversamples returns in order to estimate the acf. Image credit:
Phil Erickson.

suring only the sky noise, which of is stationary (along the radar beam) and independent of S2. It

is not constant, though. So it must be continually compensated by sampling beyond the plasma,

where the received signal consists only of the noise components. The total noise is estimated by

averaging these long-range samples: PN = 1
KN

∑
kN

2
k,sky +N2

sys. The system noise N2
sys is estimated

by injecting noise of a known temperature into the receiver during an idle period. Then the noise-

compensated power signal is

P̂ = PS+N − PN .

The normalized variance of of P̂ is

Var
(
P̂

P

)
∝ 1
K

(
S2 +N2

S2

)
=

1
K

(
1 +

1
SNR

)
. (.)

(See Farley () and Lehtinen () for more details.)

Estimating the plasma ACF from lagged products

The isr measurement process involves sending a pulse, then sampling and storing lag products.

(See Figure ·.) For instance, after sampling {Z0,Z1,Z2, . . .} (where Zi = Ii + jQi is a complex signal
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Fig. 6.8. Range-time diagram illustrating how the contributions from a decoded
Barker-coded pulse add in phase only from a narrow range interval centered on
c(ts − 5Tb)/2.

Length Code

2 + − or + +
3 + + −
4 + + − + or + + + −
5 + + + − +
7 + + + − − + −

11 + + + − − − + − − + −
13 + + + + + − − + + − + − +

Table 6.1. Barker codes. The lengths are measured in bauds or bits. The

5-, 7-, and especially 13-baud codes are the ones most commonly used in

incoherent scatter.

that they involve the addition of (complex) voltages that contain crucial

phase information, and so the compression schemes fail if the scattering

medium rearranges itself appreciably during the total (uncompressed) pulse

duration. The details of what happens to Barker-coded incoherent scatter

signals when the correlation time of the medium does become comparable to

the total pulse length is discussed by Gray and Farley [1973]. For example,

for a single ion species and equal electron and ion temperatures, there is

some slight deterioration when Tp/τx = 0.25, where Tp is the total (uncom-

pressed) pulse length and τx is the delay to the first zero crossing of the ACF.

The deterioration is more serious when this ratio becomes unity or larger.

This zero-crossing time is of the order of 100 µs for 430 MHz in the F re-

Figure 3·4: The ISR measurement process (monostatic, Barker coded pulse). A 5-baud phase-
coded pulse. In the receiver’s matched filter, the decoded components add in-phase only
from a narrow range interval. Image credit: (Farley, 2008).)

resulting from in-phase/quadrature (iq) modulation), the lag products are computed:

〈
Z0Z

∗
0
〉

= I2
0 +Q2

0〈
ZiZ

∗
j

〉
= (I2

i +Q2
j ) + j(IjQi − IiQj )

These products are the starting point for a nonlinear least squares fitting procedure. The acf

encodes information about the plasma such as electron density, electron and ion temperatures, ion

composition (by mass), and bulk E ×B drift.

Figure · shows the range-time diagram for a straightforward measurement method. A single,

long pulse is transmitted. Then the receiver samples the backscattered signal at a faster rate. The

shaded regions of overlapping ranges depict those regions of the scattering volume that—for those

lags—are correlated, and which therefore contribute to the estimate of plasma acf. Conversely,

the unshaded regions contribute noise to the measurements in the form of uncorrelated clutter.

Although the volume of the correlated region decreases with increasing lag, the range resolution is

governed by the pulse length τ .

To improve range resolution, we could use a shorter pulse. But that would () transmit less

power and () require an increase in the receiver bandwidth. The combination of reduced signal

power and increased noise is not a wise strategy. Especially, considering (.), if it leads to a very

low SNR.

On the other hand, there are a number of clever methods of improving range resolution. These

include transmitting multiple short pulses and receiving at corresponding lags z(t), z(t − τ), z(t −





2τ), . . . (Farley, ). An alternating sequence of coded pulses is another strategy (Sulzer, ;

Lehtinen et al., ). The goal, in any case, is to concentrate the signal power over a short region

(to improve range resolution) while retaining the energy of a long pulse (proportional to the pulse

length τ).

Because we wish to observe high variability in both space and time, we focus on the region

below ∼ 300 km and use Barker coded pulses (Gray and Farley, ) to probe the region with high

spatial and temporal resolution. A Barker code is a specific type of binary phase code (with phase

indicated by ‘+’/‘-’) with the property that, after matched filtering, its sidelobes have magnitude

no greater than one. AnM-length Barker code results in an a main lobe with magnitudeM. Barker

coded pulses yield measurements with high range resolution (cτ/2M), at the expense of spectral

information due to the sidelobe clutter.

Propagation of uncertainty

The estimation variance associated with a Barker code is on the same order as (.). In a given

beam direction, amisr observes range-resolved power. Each measurement is accompanied by a

measurement variance
〈
P̂
〉
/ 〈P 〉, which is then propagated through the kriging variance via (.).

This generates the spatial map of uncertainty as discussed in Chapter .

The enabling technology for this thesis is a relatively new class of instrument in ionospheric

study. The electronically-steerable isr platform known as amisr is capable of repointing its beam

while gathering data, providing a level of spatial context not previously afforded to isr. As the

beam of amisr sweeps across the sky, it registers the returned pulses in angular direction as well

as range. Depending on the dynamics of the process under observation, measurement over the

entire field-of-view (fov) can be regarded as simultaneous. This is the essential difference of an

electronically steerable beam: data registered simultaneously in both azimuth and angle as well as

range constitute a 3D “snapshot” of the target volume.

3.2 Exploring volumetric ISR data

A single, stationary beam yields observations of how reactive the target is to radar pulses as well as

the distance (range) to the target along the beam. A range-time-intensity (rti) plot provides a quick

visual summary of the evolution of features within a given beam. (See Figure ·.) In a range-time-

intensity (RTI) plot, the color axis depicts return signal power Pr . (For the plots in this chapter

have transformed Pr to an approximation of Ne, the electron density, because this is the quantity of
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scientific interest.)

Figure ·a is simply computed from the RTI plot corresponding to one beam direction. In fact,

this is the beam closest to the zenith (actually 88° elevation). The four plots of Figure ·c are its

neighbors to the NE, SE, SW, and NW, each at 86° elevation. The RTI plot in panel b is a complete

fiction. It represents a “virtual beam” in the zenith direction, emerging from the center of the

radar. (Any orientation can be selected, of course, but since most atmospheric properties vary with

height, and their vertical profiles will ultimately be compared, it is reasonable to choose the zenith

or the magnetic zenith.)

The purpose of such a mapping is to align measurements for comparison. RTI plots are com-

monly used as summaries, displayed one beside another. Patterns can be obscured this way since a

beam pointing ◦ off the horizon will highlight, not merely lower-altitude features than a zenith

beam, but possibly different types altogether in an aniostropic atmosphere. One could imaging

simply mapping range to height, which may be suitable for summary purposes, but it again ne-

glects the possible horizontal features as above.

This zenith beam is not a simulation of what the radar would “see” were it operating in single-

beam mode. It’s orientation and location can be chosen anywhere within the observing region, with

the full resolution of the data available. Two adjacent virtual zenith beams could be predicted and,

while their profiles will be similar owing to the spatial dependence of the random field they would

be unique. (A sequence of such profile predictions is, of course, the basis of volumetric imaging.)

The image of Figure ·b is necessarily smoother than the others, since it is constructed using

a kriging predictor. The spatial variability of kriging predictors is less than the processes they

predict.

A detail of this event is depicted in profiles of electron density versus height (Figure ·). Each

row depicts the same five-minute period, but different (offline) integration times. Beginning at the

top, panel a collapses all five minutes into a single profile, panel b is integrated approximately half

as long, panel c half again, and panel d represents the finest time resolution available for these

data, ∼ 15 s. Naturally, the course of propagation is more easily traced in the higher-resolution

profiles.

Figure · also compares the kriging predictor with two popular interpolators: trilinear and

natural neighbor. Both are based on Delaunay triangulation. Linear interpolation, despite its pop-

ularity, is known to be non-differentiable in three dimensions. Natural neighbor interpolation,

which weights the influence of nearby data based on the volumes of their respective Voronoi poly-
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(a) RTI from power returns in one
beam only

(b) “Virtual” RTI in zenith direction,
near center of fov.

(c) Four beams surrounding the on in (a).

Figure 3·5: Range-time-intensity (RTI) plots showing the ionospheric response to an auroral
ionization structure. The downward approach of (a) The view along a single beam. Ne
is computed from the instantaneous power returns at each range gate. (b) A “virtual” RTI
oriented along the zenith.





(a) 5 minutes (960 pulses)

(b) 2 minutes (480 pulses)

(c) 1 minute (192 pulses)

09:42 09:43 09:44 09:45 09:46 09:47

100

110

120

(d) 15 seconds (48 pulses)

Figure 3·6: Vertical profiles of electron density, predicted along a virtual beam near the center
of the fov. Kriging versus interpolation. Each successive row is a time sequence of increasing
time resolution (achieved by post-integrating data with native resolution 14.6 s). Kriging uses
all the data (values depicted on the axes as dots), after weighting by distance (here, shading).
Row (d) shows kriging only.
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Figure 3·7: Fitting the variogram of electron density data versus altitude.

hedra (Sibson, ; Cueto et al., ), is very similar to kriging. Cressie (, pp. –)

compares both of these Delaunay methods to kriging.

Also plotted along with the profiles in Figure · are the data they interpolate. Each data

point is shaded according to its horizontal distance from the “virtual beam” of the prediction

(darker=closer). The kriging predictor uses all the data, but weights it according to distance, clus-

tering, and the covariance function CY (s).

Variography

The form of kriging used in this example is Ordinary Kriging (see Section .). This method as-

sumes a known covariance function CY (s) and, from data Z, determines both the unknown, con-

stant mean µY and the minimum-mspe predictor ŶOK (Z). Of course, CY (s) is not known. Rather,

in this case, it is estimated by examining the empirical semivariogram. Letting Z represent a set of

electron densities along single vertical line between 130 km to 200 km the empirical semivariogram

is given by (.): (
Zi −Zj

)2
∀i, j ∈ {1, . . . ,m} .

2γ̂(h) =
1

|N (h)|

∑
N (h)

(
Z(si)−Z(sj )

)2
, h ∈ Rd . (.)

The plot in Figure · shows the semivariogram cloud, the squared-differences versus their

respective vertical distances sz,i − sz,j . To estimate the actual semivariogram, the cloud is binned

and averages computed. The standard estimator is simply the mean value of points in each bin.

Cressie and Hawkins () suggests an alternative to mitigate the effects of extreme outliers:

2γ̄(h) =
{ 1
N

∣∣∣Zi −Zj ∣∣∣1/2}4
/ (0.457 + 0.494/N ) .





Both estimators are plotted in Figure · along with an estimated variogram of Matérn type (ν =

5/2) with nugget c0 = 2.5× 1021, sill σ2
0 = 2.5× 1022, and scale parameter 17 km.

Finally, Figure · also shows these data in D, first using trilinear interpolation, then kriging

using the parameters derived above.

3.3 Experiment: Direct volumetric imaging of ISR electron densities

Data were collected on Nov, with PFISR cycling through an 11× 11 grid of beam positions.

This is an extremely dense sampling mode, with 3◦ separation between adjacent beams in each

orthogonal direction. At 100 km altitude, the sampled region is approximately rectangular with

sides∼ 65 km× 60 km. At the same height, the horizontal spacing between beam centers is∼ 5.2 km

to 6.2 km. At that time, only  panels were installed, and the 1°× 1.5° beamwidth at 100 km

altitude was ∼ 1.7 km× 2.6 km to 2.1 km× 3.1 km.

PFISR is capable of running three channels simultaneously, and for this experiment we used

data from two channels, each operating with a -baud Barker coded pulse. With 10 µs baud

(a) Linear interpolation

Figure 3·8: Trilinear interpolation of electron density derived from backscatter power. 11 Nov,
2007. Integration time: 15 s.
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(b) Ordinary kriging
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Figure 3·8: (continued) Ordinary kriging prediction of electron density from backscatter power.
11 Nov, 2007. Integration time: 15 s.
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lengths, this results in a range resolution of ∼ 1.5 km.

This setup was used to monitor E-region electron density in each of the  beams up to about

 km altitude. Electron density was computed from received power. In this region, neutral

particle collisions place electrons and ions in (approximate) thermal equilibrium. Substituting

Te = Ti , that is the effective r.c.s. for this scattering volume is

σ =
σe

(1 + k2λ2
D )(2 + k2λ2

D )
,

where σe is the r.c.s. of a single electron (a known constant), k is the radar signal wavenumber, and

the Debye length λD = (ε0kBTe/neq
2)1/2 is a fundamental scale length in plasma physics.

Using the radar equation for volume scatter, the electron density is directly proportional to

received power

Ne,raw(r,θ,φ) =
2Csr2Prx(r,θ,φ)

Ptxτ
(.)

The system calibration constants Cs(θ,φ), encapsulating various losses, are provided with the data.

The data products in these experiments are spatio-temporally–resolved physical parameters.

As discussed in Section ., the range resolution, temporal resolution, and cross-range resolution

are determined by a tradeoff between the pulse width, IPP, and number of beams, respectively.

(The investigator determines which combination is most appropriate based on the resolution and

extent requirements of a particular experiment.)

To cycle through this grid of  beams takes PFISR 0.61 s. To reduce the amount of data for

storage,  pulses were integrated for each beam, giving a temporal resolution of ∼ 15 s. Since the

SNR is very high in this experiment, the expected error for point measurements (.) reduces to

1/
√
K . For K = 2×24 = 48 (observing on two independent channels), the uncertainty is .%. This

is quite high, but it can be reduced by post-integrating the -second samples (thereby lowering

the time resolution).

3.3.1 3D imaging

With such a small number of pulses, only the most energetic events are likely to be resolved above

the level of noise. One such event, an auroral arc activation, is also characterized by dynamics

that make a short-cadence instrument attractive for studying it. With a cadence of 15 s, though

not comparable to the speed of an optical camera, PFISR was able to capture the response of the

ionosphere to an individual arc activation. The following events can be observed in the D images:





::–:: UT An auroral ionization structure at 120 km altitude extending down to nearly

107 km. (This is observed in roughly the same horizontal location directly below, where we

would expect it, so we must be fully resolving this event in time at this cadence.) Figure ·.

::–:: UT An annular structure at 100 km. Compare this with the reconstructions at

-min cadence. Figure ·.

::–:: UT West-to-east apparent motion. Recombination time on the order of seconds.

Apparent motion actually due to motion of ionizing sources. Figure ·.
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Figure 3·9: 10 November, 2007. 15-second reconstructions. Trilinear interpolation.
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Figure 3·10: 10 November, 2007. 15-second reconstructions. Universal kriging.
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Figure 3·11: 10 November, 2007. 15-second reconstructions. Trilinear interpolation.
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Figure 3·12: 10 November, 2007. 15-second reconstructions. Universal kriging.
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Figure 3·13: 10 November, 2007. 15-second reconstructions. Trilinear interpolation.
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Figure 3·14: 10 November, 2007. 15-second reconstructions. Universal kriging.
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Switching from high time resolution to high data fidelity, Figure · shows the results after

integrating for five minutes:

:–: A steady increase in Ne at 120 km altitude. (Primary electron energies are ∼ 2 keV.

The increase appears to occur simultaneously over a large region.

:–: The ionization at 120 km decreases. Meanwhile, a 100 km to 110 km, at structured

enhancement appears.

:–: The lower structure abates. (Electrons precipitating below 100 km primarily have

energies > 20 keV.)

:–: Electron density peaks around 107 km. (Electrons ∼ 10 keV.)





(a) Electron density. 10 November, 2007. Integration time 5 min.

Figure 3·15: Trilinear interpolation
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(b) Electron density. 10 November, 2007. Integration time 5 min.

Figure 3·14: (continued) Trilinear interpolation
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Figure 3·15: 10 November, 2007. Integration time: 5 minutes. Universal kriging.
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Figure 3·16: (Continued) 10 November, 2007. Integration time: 5 minutes. Universal kriging.
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(a) PFISR field of view. (b) Predicted luminence.

Figure 3·17: Coregistered data from PFISR and a digital all-sky camera (DASC). (a) A frame
from the DASC with an auroral arc (top) traveling south during a substorm. The radar’s
11× 11 beam grid is projected onto the dome of the sky. (b) Detail during a substorm.
The lines represent the integrated ion production along the line of sight of both instruments.
Auroral luminence is also proportional to this quantity. The correspondence of the two instru-
ments.

3.3.2 Radar-optical comparison

This experiment is also supported by optical data from a nearby digital all-sky camera (dasc) record-

ing white light with a 10 s cadence. The camera and radar are essentially collocated. In Fig-

ure ·a, the grid of beam directions is projected onto the field of view of the all-sky camera.

An auroral arc can be seen moving equatorward from the top of the frame, just outside of PFISR’s

field of view.

The two instruments can measure the same quantity. The dasc detects the aggregate of pho-

ton emissions falling upon its sensor. This is proportional to the rate of ion production inte-

grated along the line of sight (Semeter and Doe, ). Due to the high rate of collisions in the

E-region, the plasma continuity equation is kept in an approximate steady state, such that pro-

duction equals loss. Plasma loss occurs through chemical recombination at the rate αNiNe =

αn2
e . In the auroral ionosphere, Vickrey et al. () gives this recombination coefficient as α =

2.5× 10−6 exp(−z/51.2)cm3 s−1, and (Semeter and Kamalabadi, ) explore the range of validity

for this approximation.
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Assuming the camera and radar are in the same polar coordinate system, such that a single

PFISR beam is approximately equivalent to a group of optical pixels, then (to within a constant K)

the optical brightness ε can be estimated from Ne by integrating over range:

ε̂ ∼
∞∫

0

αN2
e dr (.)

Figure ·b shows the correspondence of these two measurements.

3.4 Exploiting spatial redundancy

Because a monostatic radar relies on a time sequence of D point measurements, spatial informa-

tion is acutally inferred from temporal properties of the received signal. In radar, space = time.

Namely, the range of the target is r = cτ
2 , where τ is the time delay of a pulse from the transmitter

to receiver. Designing a radar system, the following factors represent design constraints: Maxi-

mum range = cIP P
2 , Range resolution = cT

2 . IPP is the inter-pulse period, the time between which a

(monostatic) radar waits before sending its next pulse. T is the length (in µsec of the pulse, and c

is the speed of light.

In isr, there is a four-way tradeoff between () spatial context or resolution, () temporal resolu-

tion, () spectral resolution or lag extent, and () data fidelity. But the rapid-scanning multi-beam

experiment is not simply a multiplicity of single-beam experiments. There may be a gestalt ad-

vantage to gathering data in this way, rather than as a scan. Whether it outweighs the reduction in

temporal resolution or fidelity will depend on the user’s needs.

Space-time ambiguity and spatial context

Broadly speaking, precision and uncertainty are reciprocal concepts, and there generally exists

a tradeoff between pairs of properties that can be said to be duals in this sense. For instance,

pulse shaping is a strategy for enhancing range resolution, but at the expense of bandwidth (and

thus noise power). This precision/uncertainty tradeoff is characteristic of choosing a resolution in

experiment design (see, e.g. Menke, ).

Re-pointing the radar beam presents the experimenter with one or two additional spatial di-

mensions and improved spatial context (read: “resolution,” in that the instrument now resolves

more than a single point). From the point of view of the monostatic radar, however, the data are a
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D time series. Spatial context can be gained, but only at the expense of temporal resolution. 

Consider scanning a dish antenna. There is a practical limit to how quickly the dish can be

repointed, owing to its inertia. While scanning, it continues to operate in its usual mode, accu-

mulating measurements to form a reliable estimate of the plasma ACF. This internal accumulation

amounts to destructive (non-reversible) error, merging (at least for the duration of the accumula-

tion) distinct targets, i.e. smearing.

Of course, performing such a scan conveys a benefit over single-direction ISR: the scanning dish

can distinguish () a process that is dynamic (in intensity) but stationary (in position) and filling

the beam from () a localized structure that is static (in intensity) but crossing the beam. To the

rigid antenna, both appear as processes in time. This is the classic space-time ambiguity problem.

However, the speed of the scan is limited by the inertia of the dish antenna. As the beam tra-

verses the region of interest (at such a speed and integration time to minimize smear), an image

emerges of the observed process along the path of the scan. However, as Figure  demonstrates,

there is now also a different type of ambiguity, though its impact is mitigated by its low likelihood.

Figure  depicts the pathological scenario of a localized, beam-filling structure convecting at the

same angular speed as the radar’s scan. To the radar, this scenario is indistinguishable from an un-

moving, broadened feature. Though we gain greater spatial context through scanning, we haven’t

escaped spatio-temporal ambiguity.

Now consider a radar capable of pulse-by-pulse steering. Rather than dwell in one position

and gather a statistically significant sample, the beam loops through a pre-programmed sequence

of directions. Although certainly not free of similar ambiguities, the greater spatial context (and

now “simultaneously” measured) at least leaves open the possibility of resolving such. Of course,

the cost for spatial context is temporal resolution! If the beam cycles through N positions per

frame, the process is observed with only 1/N times the sampling frequency, and dynamics may

not be adequately captured. Alternatively, if the experimenter can afford to “dial down” the in-

tegration time, precision can be traded for resolution in both space and time. Indeed, Semeter

et al. () analyzed D structures at a cadence of 14.6 s, corresponding to an extremely low

48 pulses/integration/beam. And yet the structures were consistent with their longer-integration

counterparts! Chapter  discusses that example, among others.

This tradeoff of spatial and temporal resolution is analogous to the interlaced sampling in television systems, except
that the experimenter has some control of the sampling pattern. Jain () describes interlaced sampling.
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3.5 Conclusions

PFISR is the first electronically steerable isr dedicated to ionospheric study. This chapter demon-

strates the capabilities of PFISR for producing three-dimensional volumetric images of the iono-

spheric E-region during auroral activity. The volumetric data were acquired using a square array

of 11 × 11 beams. A phase-coded pulse was used which provided ∼ 1.5 km range resolution. The

output from the demodulator was converted from backscattered power to electron density. The

resulting D images were quantitatively compared with all-sky white-light camera observations

through an ion continuity equation, demonstrating good agreement.

The time taken to cycle through beam pattern places a practical limit on the temporal resolu-

tion. In this arrangement, PFISR can capture ∼ 1.6 frames/s, which corresponds to 48 pulses/angle,

yielding uncertainties of ∼ 14 %. The efficacy of this mode for addressing time-dependent studies

of magnetosphere-ionosphere interactions is discussed.
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Chapter 4

Velocity field imaging: F-region bulk plasma drift

A thousand pictures can be drawn from one word
Only who is the artist
We gotta agree

“I’m Just a Singer (in a Rock and Roll Band)”
The Moody Blues

Perhaps for the s rock group The Moody Blues, it was simply a clever inversion of a familiar

adage, but the above quote aptly describes the role of modeling in inverse theory. An underdeter-

mined problem is one for which, roughly speaking, the data space is smaller than the model (or

parameter) space. That is, a single “word” of data corresponds to innumerable possible pictures

of the reality captured by the observation. Selecting from among these possibilities is the art of

solving inverse problems. The mathematics (ordinary least squares, maximum likelihood, etc.) are

only part of the answer. The solution may still be meaningless without a conscious effort to identify

the the “artist,” that is the model that generated that picture.

Pulse-by-pulse beam steering provides experimenters additional flexibility in the form of an

additional dimension in which to trade off temporal resolution versus spatial context, making ob-

servable small-scale spatial variability in ionospheric structure, while also capturing the dynamics

of ionospheric processes. In this chapter, we investigate an inverse-theoretic approach to pre-

dicting F-region flow fields from a monostatic electronically-steerable isr. First, we compare two

predictors of velocity field. Then we explore two case studies.

The principal application is the study of substorms through two concomitant phenomena:

dynamic auroral activity and local variations in ionospheric flow. Although the basic plasma

physics describing these effects is well-developed, their relation to one another is poorly under-

stood (namely, their causitive order and their linkage through the greater near-Earth space envi-

ronment, including the magnetosphere and the solar wind). The techniques developed here may

help clarify that connection.
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Background

In the previous chapter, we examined the capability of a monostatic radar to resolve (in space

and time) various plasma parameters derived from the isr spectrum. This chapter focuses on the

bulk Doppler shift of the spectrum, which provides a measure of the bulk ion flow (more pre-

cisely, that component of the ion flow lying along the line-of-sight of the radar beam). Strictly

speaking, a monostatic radar can only observe the component of velocity lying along its line-of-

sight (LOS). (A multistatic configuration, by which the target is observed by more than a single

transmitter/receiver simultaneously, is needed to resolve more than one component in truth.) But

rapid electronic beam steering has a slight advantage: each pre-programmed beam direction has

a slightly different view of the target. By combining these views, and by making some spatio-

temporal regularity assumptions, it is possible to reconstruct the underlying vector velocity field.

A similar trick is demonstrated by Hagfors and Behnke () at Arecibo Observatory, recover-

ing a three-dimensional velocity vectors by continuously scanning the beam in azimuth for twenty

minutes. Doupnik et al. () include a physical model of ionospheric velocity to estimate the

electric field vector. Sulzer et al. () introduced linear regularization to deal with rapid varia-

tions within the scanning time of the antenna.

Despite these advances in processing, spatial and temporal resolution are ultimately limited

by the hardware. In the time required to steer a heavy dish antenna, details of the most dynamic

events in the ionosphere will have been smeared across its scanning region. In this chapter, we use

the D “snapshot” mode of PFISR to investigate its ability to resolve localized flow variations. We

now focus our attention on ionospheric events associated with such flow variations.

Substorms

Magnetospheric substorms are regularly occurring, often violent, disturbances of Earth’s magneto-

sphere that frequently affect plasma convection patterns in the ionosphere. Though originally de-

fined and classified by their more readily visible effects (the expansion of the auroral oval, followed

by spectacular discrete auroral arcs) (Akasofu, ), substorms are now understood to be caused

by the impulsive dissipation of free energy from the magnetosphere to the ionosphere (Rostoker

et al., ; Rostoker, ). Although the exact triggering mechanism is not clearly understood

(Zhu et al., ; Lyons et al., ), tremendous effort is spent studying the flow of energy in and

from the magnetosphere (Angelopoulos et al., ).

A simple begins with the magnetic field of the Sun, bound by the solar wind and traveling
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Earthward, which merges with the Earth’s own magnetic field (GMF) on the day side and convects

these now-open field lines to the night side. Thus, the magnetosphere is compressed on the day

side and elongated on the night side into a magnetotail. Under increasing magnetic stress deep in

the magnetotail, the field lines reconnect, resulting in sudden particle acceleration toward Earth,

hot plasma injection into the ionosphere, and the well-documented auroral oval expansion (Schunk

and Nagy, , Chapter ).

In addition to enhanced auroral emissions and particle precipitation, substorms are associated

with global-scale electrical currents and localized regions of enhanced electric field. Convective

disturbances can be a direct result of these electric field enhancements (Bristow and Jensen, ).

Optical aurorae, then, are a secondary effect, a response of the ionospheric plasma to currents aris-

ing from these flow disturbances. And yet it is the auroral morphologies that define the canonical

substorm phases. The physical processes connecting these two phenomena remain poorly under-

stood, due partly to inadequate observation.

This chapter explores the imaging of local flow disturbances in the high-latitude F-region us-

ing isr-derived measurements of LOS velocity. The image reconstruction is based on linear inverse

theory. We analyze the limitations of this type of reconstruction and present two case studies. In

Section ., we describe the measurement process, observation geometry, and important assump-

tions. In Sections . & . we detail how we exploit the rapid scanning capability of PFISR to

generate a two-dimensional “snapshot” of ion flow patterns. The accuracy of these techniques is

evaluated in Section .. We then present case studies (Section .) showing some of the features

demonstrated in the preceding analysis. Section . presents a summary of findings and suggested

extensions.

4.1 Methodology

We frame the problem of velocity field prediction as a linear discrete inverse problem. That is,

given a forward model mapping the underlying field v(x,y) to a set of independent line-of-sight

(LOS) measurements vlos, we develop an inverse model to evaluate v̂(x,y), a predictor of the original

field v(x,y).

Phased-array radar experiments generally involve an arbitrary number and arrangement of

beams. Thus the problem of predicting velocity components from projections may be overdeter-

mined (equations outnumber the unknowns). Heinselman and Nicolls () predict using linear

least squares, which handles the overdetermined problem gracefully, making use of appropriate
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Figure 4·1: The 26-beam configuration used in the experiment of Section 4.5.

data while respecting the limited rank of the forward operator. The authors generate time se-

quences of velocity vectors resolved along magnetic latitude, under the assumption that flows are

ordered in that dimension. (This is a standard assumption in isr analysis of high-latitude con-

vection, and is useful for scanning dish antennas.) Instead, we envision the radar measurement

process as a direct three-dimensional acquisition, generating a “snapshot” of the entire fov near-

simultaneously. Our measurement model is overdetermined, and we use regularization to impose

physical constraints on the solution. The technique described here is general in that it can be

applied to any beam sequence and the prediction evaluated on an arbitrary grid.

Observation geometry

To illustrate, let us focus on a beam sequence particular to the PFISR experiments in this chapter.

Volumetric data were acquired using a grid of  beam positions (in a 5×5 grid with one addtional

beam in the direction of the magnetic fieldline. At 350 km altitude, the sampled angular space is

approximately rectangular and subtends a 300km× 250km region.

Each data point in Figure · is the midpoint of a range gate. Assume that a nonlinear fitting

procedure has assigned estimates of isr plasma parameters to each point. Among these is vlos, the

line-of-sight component of bulk ion drift. We select those data ranging in altitude from 200 km to
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Figure 4·3: A simple example. A uniform velocity vector is projected onto three lines-of-sight.
In this full-rank system, as long as k1 . . .k3 are unique, we can recover all three components
of v from the measurements v1

los . . .v
3
los.

350 km, where the vertical component of v is considered negligible.Then the entire set of sample

points is collapsed onto a horizontal plane. In this range of altitudes, E (and thus v) maps directly

up the field line, so nothing is lost.

Forward model

Each range-gated acf yields an independent measurement of vlos, the bulk ion velocity projected

along the direction of the beam, given by

vlos = k̃ · ṽ, (.)

Although significant ion upwelling may occur, field-aligned velocities in this range are < 200 m s−1 (Wahlund et al.,
; Semeter et al., ; Zettergren et al., ), while convective flows are typically in the km s−1 range (Whalen et al.,
; Fujii et al., ).
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ṽ =
[
ve, vn, vz

]T
is the bulk ion velocity within the measurement volume (the tildes signify a

radar-centered geodetic coordinate system). k̃ is a unit vector defined in terms of direction cosines

k̃ =

ke
kn
kz

 =

cosα
cosβ
cosγ

 =

x/Ry/R
z/R

 ,
where x, y, & z are the distances east, north, and vertically from the radar, respectively. and R =√
x2 + y2 + z2 is the range to a given measurement point from the radar. For high elevation angles,

the Earth’s curvature is negligible and

k̃ =

ke
kn
kz

 =

cosθ sinφ
cosθ cosφ

sinθ

 ,
where θ is elevation and φ is azimuth (measured east from north).

In the F-region above ∼ 150 km, neutral collisions have less influence, and an ion encountering

electric field E and magnetic field B experiences guiding center drift velocity

v =
E×B
B2 . (.)

Assume both E and B are constant along a magnetic field line from 150 km to the maximum range

of the radar (∼ 400 km). The natural geometry for this problem, then, is the geomagnetic reference

frame defined by B. For our purposes, this is a simple rotation from radar-centered geographic

coordinates according to local magnetic inclination (or dip) I and declination δ. I.e., a rotation

matrix is applied to k̃,

k =

kpe
kpn
kap

 =

 cosδ −sinδ 0
sin I sinδ sin I cosδ cos I
−cos I sinδ −cos I cosδ sin I


ke
kn
kz


= Rgeo→gmagk̃,

and its inverse (transverse) will be applied later to plot the solution in geographic coordinates.

The subscripts pe, pn, and ap stand for perpendicular-east, perpendicular-north, and anti-parallel

(since B is directed downward in the northern hemisphere).

A single LOS projection, as in equation (.) does not provide enough information to resolve

the vector velocity; more measurements are needed. Consider the simple example in Figure ·.

The three measurements
{
vilos

}
are projections of a uniform velocity v onto three unique beam
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directions. This threefold projection can be expressed in matrix form as

vlos =


v1

los
v2

los
v3

los

 =


k1

pe k1
pn k1

ap
k2

pe k2
pn k2

ap
k3

pe k3
pn k3

ap


vpe
vpn
vap

 = Av, (.)

i.e. by stacking the corresponding projection vectors into a projection matrix A. If A is not singular,

this could be solved by direct matrix inversion. However, for any pair of ki ’s sufficiently similar,

A becomes nearly singular. This especially becomes a problem in the presence of noise, as propa-

gation of error is compounded. Secondly, (.) does not allow the inclusion of even one additional

measurement. The problem becomes overdetermined and in the worst case a solution does not

exist.

In this simplified example, all three beams measure a uniform velocity v. Since we are inter-

ested in resolving the spatial variability of the velocity field v(x,y), we do not assume uniformity

among all the measurements in a given frame. Instead, the matrix A must be expanded to in-

clude multiple, spatially distributed vectors v(x,y). Already, we run up against a limitation of

algebraically inverting the projection operation, since this expanded A is not necessarily a full-

rank matrix. The inversion may be either overdetermined or underdetermined, and the technique

we apply must handle either case.

4.2 Inversion 1—Overlapping pixels

The first such expansion of A is formulated by repeating a sequence of discrete inversions in differ-

ent bins. This method is described by Semeter et al. (), and is a two-dimensional extension of

that described by Heinselman and Nicolls (). Since the magnetic field acts as a perfect conduc-

tor, we may assume constant horizontal velocity along the magnetic field line. Furthermore, the

flow field should be somewhat smooth, so neighboring measurements represent somewhat similar

velocities. So we collapse the flow field to a horizontal plane in geomagnetic coordinates.

Measurement samples were selected in the altitude range from 150 km to 400 km and binned

into a 4 × 4 grid of pixels (see Figure ·). Pixel boundaries are defined by considering the total

horizontal extent of the data points. Each is approximately 100 km2 × 100 km2. Each pixel shares

% of its area in either direction with its nearest neighbors. This imposes correlation between

neighboring pixels, and is equivalent to a spatial smoothness constraint.

The 4 × 4 pixelization satisfies a trade-off between spatial resolution and the amount of inde-

pendent information contained in each pixel. Although we could choose a finer sampling, each
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Figure 4·4: The “overlapping pixels” predictor described by Semeter et al. (2010) uses over-
lapping pixels. Circles represent range gates on each beam, and the filled circle is the last
gate selected for that beam. The colored boxes identify two neighboring pixels. Black dots
indicate pixel centers. cf. Figure ??.

pixel should contain data from approximately three beams.

For each pixel, we solve a separate discrete inverse problem. Assuming uniform flow v within

each pixel, the forward model describing the projection of v onto M lines-of-sight is formed, not

unlike equation (.), by stacking the corresponding projection vectors:

vlos =


v1

los
v2

los
...
vMlos

 =


k1T

k2T

...

kM
T

v +


e1

los
e2

los
...
eNlos

 (.)

= Apixelv + elos, (.)

where now elos represents the random perturbations inherent in the measurement process. We will

assume this is a zero-mean Gaussian with covariance matrix Σe, the diagonal elements of which

are provided by the isr fitter.

Note from the figure that most pixels include multiple measurements from a given beam. Al-

though in the absence of noise, these projections onto the same k would provide no additional

information over a single measurement, here they all contribute to the solution, serving to reduce

statistical uncertainties. This is important given the ill-conditioned nature of the inversion.

Equivalently, the projection matrix in equation (.) contains linearly dependent rows, i.e. identical k vectors.
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The least squares solution, for each pixel, is a well-known result (Tarantola, , e.g.):

v̂ = ΣvAT
(
AΣvAT +Σe

)−1
vlos, (.)

with assosciated error covariance

Σv̂ = ΣvAT
(
AΣvAT

)−1
AΣv. (.)

where Σv can be interpreted as a prior constraint: that v is a zero-mean Gaussian r.v. with

covariance matrix Σv. This is the same predictor used by Heinselman and Nicolls () for F-

region drifts.

The overlapping pixels predictor is an ad hoc extension of of Heinselman and Nicolls ()

to two dimensions. Although it illustrates the capability of resolving vector velocities from LOS

projections, it has limited flexibility regarding recovery regions (or pixels). This method depends

on two stages of smoothness assumptions: first that the velocity is uniform within a given pixel,

and second that the measurements in overlapping regions are reasonably consistent. Formula (.)

is evaluated in each pixel independently, with the understanding that the second smoothness as-

sumption will likely be violated. This method is explored in more detail in Section .

4.3 Inversion 2—Tikhonov regularization

To take better advantage of the correlations between neighboring measurements, this method is

framed more rigorously in the context of inverse theory. Rather than solving independent prob-

lems in each pixel, we consider the unknown velocity field v(x,y) a latent process, and construct

a forward model mapping the v to the measurements (the set of LOS projections vlos). Discretiza-

tion is handled explicitly and separate from the inversion, providing greater flexibility by offering

a choice of reconstruction basis functions. A spatial smoothness constraint is physically justified

and implemented in a classic Tikhonov regularization framework.

Discretization

Although the LOS measurements are inherently discrete, we assume an underlying continuous ve-

locity field v(x,y). For implementation in a computer, this can be discretized spatially and regarded

as a column vector, i.e.

v(x,y) =
N∑
j=1

vjbj (x,y),
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Figure 4·5: Pixelization for Tikhonov-regularized predictor.

where
{
bj (x,y)

}N
j=1

is some basis spanning the region of interest. This can be simple rectangular pix-

els, or something more elaborate such as a multiscale or sparse basis. In practice, each component

of the vector v is discretized independently, and the resulting column vectors stacked so that

v =
[
v1
pe, . . . , v

N
pe,v

1
pn, . . . , v

N
pn,v

1
ap, . . . , v

N
ap

]T
.

For illustration, we use the intuitive rectangular pixel basis. Because the beams in Figure ·

are roughly aligned with the magnetic meridian, the data points are first rotated to geomagnetic

coordinates so that they align with pixels. Once again, the 4 × 4 grid of Figure · is an attempt

to balance the compromise between spatial resolution and information content within each pixel.

Although we could choose a finer sampling, or a non-uniform one, the goal is for each pixel to

contain data from approximately three beams in order to approach observability.

In general, the velocity field v(x,y) is divided into N pixels and we observe M LOS projections.

This set of projections is expressed in the M × 3N matrix

ATik =


k1
pe · · · · · · k1

pn · · · · · · k1
ap · · · · · ·

· · · k2
pe · · · · · · k2

pn · · · · · · k2
ap · · ·

...
...

...
· · · · · · kMpe · · · · · · kMpn · · · · · · kMap

 .
That is, each row contains exactly three nonzero elements mapping the velocity vector in the jth
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pixel to the ith LOS measurement such that (by analogy to (.))

vlos = ATikv + e. (.)

Clearly, for an arbitrary choice of beams and reconstruction grid, this matrix is not directly invert-

ible. This constraint will be included as a part of the inverse model.

Inversion

The forward model (.) consists of four terms: the LOS observations (vlos), a velocity field (v),

the operator (A) mapping one to the other, and random additive noise e. An inverse model is con-

structed from these elements and then applied to the observations to recover the underlying field.

Several approaches have been developed, and we proceed with the classic method of Tikhonov

regularization.

Using results developed elsewhere, the generalized Tikhonov predictor that solves equation (.)

(and introduces a side constraint L) is

v̂ =
(
ATΣ−1

e A +α−2
(
LTΣ−1

v L
)−1

)−1
ATΣ−1

e vlos (.)

with error covariance

Σ̂v =
(
ATΣ−1

e A + LTΣ−1
v L

)−1
, (.)

where Σe is the covariance matrix of e, and Σv is the covariance of a zero-mean Gaussian random

vector v, representing exogenous information, in this case the a priori probabilistic characterization

of the quantity we wish to predict.

The side constraint (encoded in the matrix L) is the other component of prior information.

Common choices are L = I (equivalent to penalizing large-norm solutions, or L = a first derivative,

to enforce smoothness. To choose a constraint for ionospheric drift, the divergence operator seems

a natural fit. I.e., the ionosphere is incompressible (∇ · v = 0), and this constraint can be expressed

in the Tikhonov formulation (.) and (.) through the matrix

L =

Lpe 0 0
0 Lpn 0
0 0 Lap

 , (.)
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where the submatrices encode discrete approximations of the first derivatives, e.g.

Lpn =



−1 1 0 0 0 . . . 0
0 −1 1 0 0 . . . 0

. . .
0 . . . 0 0 −1 1 0
0 . . . 0 0 0 −1 1
0 0 0 . . . 0 0 0


.

Because the forward difference generates a shorter vector than its input, each submatrix has some

all-zero rows. This makes the matrix LTΣ−1
v L degenerate; it has some zero eigenvalues correspond-

ing to the boundaries. The boundary conditions need not be included in (.) since the data-fit term

will select values from the observations. The smoothness constraint is only enforced for the per-

pendicular components. Since the field-aligned component is very small, we impose a constraint

on the magnitude of this component rather than its smoothness, i.e. Lap = I.

4.4 Simulation

The regularization parameter α is a non-negative factor that controls the relative influence of mea-

sured data and a priori information. Before applying our Tikhonov predictor to experimental data,

it is important to evaluate how α affects the result. Since selecting the regularization parameter is

typically a subjective process, an “optimal” value of α can be difficult to define. A single value is

not likely to yield subjectively “optimal” results for all measurements. Nevertheless, in a controlled

simulation, iterative methods of selection—whether semi-objective or utterly subjective (e.g. visual

inspection)—can aid in finding a useful practical range of α.

In this section, a simulated flow-field is predicted using (.). We examine the effect of the

incompressible flow constraint (.) and compare it to the norm-conserving L = I predictor.

The side constraint L is absorbed into the precision matrix Σ−1
v . When L = I, the prior weight-

ing term αLTΣ−1
v L = αΣ−1

v , i.e. the parameters of the prior model come down to choosing variances

for each component of v. Assuming the horizontal components are independent, let σpe = σpn =

500m/s, σap = 15m/s. Also let Σe, the error covariance, be a diagonal matrix with variances in-

versely proportional to range squared, and with a scaling factor chosen so that the standard devia-

tion is 10 m/s at  km.

The results in this section are specific to the phantom flow field and therefore do not comprise

a general analysis of the Tikhonov prediction. Instead, they are meant to motivate the use of one

Tikhonov constraint matrix L over the other for a class of process typically encountered in high-
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Figure 4·6: A model of plasma drift surrounding an ionization enhancement (e.g. an auroral
arc). Within the enhanced region, the increased conductivity reduces electric field magnitude
E (hence v, the E×B drift). Meanwhile, E drives a polarization current within the arc, forcing
charges to accumulate along the boundaries, and establishing a polarization field. The po-
larization field, in turn, results in E×B drift tangential to the arc boundary .
The diagram mimics the view upward from the ground facing north in the northern hemi-
sphere, with B directed downward (out of the page).

latitude isr research.

Flow shear simulation

We begin by simulating a velocity field morphology that is common during a substorm—namely,

a flow shear along an active auroral boundary. (See Figure ·.) This pattern is motivated by

auroral observations (de la Beaujardière et al., ; de la Beaujardière and Vondrak, ; Weber

et al., ; Bahcivan et al., ). The auroral arc is a region of enhanced plasma density, and thus

conductivity. Strong currents originating in the magnetosphere dominate the effects of the ambient

electric field E. It is possible, however, for E to drive a Hall current across the thin boundary of

the arc. The rule of current continuity causes charges to accumulate on opposite sides of the arc,

establishing a polarization field. The net effect in this case is a reduction of E, thus a reduction

of E ×B drift within the arc. Likewise, the potential gradient across the arc boundary produces a

secondary electric field such that plasma drift is parallel to the boundary.

Comparison of predictors

The light-colored arrows in Figures · and · represent the “ground truth” horizontal flows. Al-

together, v(xi , yi), is divided into two regions: zero flow (within the arc) and uniform flow parallel

to the arc boundary. The thick diagonal line signifies the arc boundary separating the two regions.
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Figure 4·7: Method A (Field magnitude constraint). Simulated velocity field and predictions for
three values of α. Light arrows represent the simulated velocity field. Dark arrows indicate
the predicted field for each pixel.
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Figure 4·8: Same as Figure 4·7, but for Method B (Incompressible flow constraint).

The drop in the electric field is quite abrupt, and for the resolution considered here, the step func-

tion between the two regions is a valid approximation.

In the simulation, LOS measurements are generated by discretizing v(xi , yi) according to the

4× 4 grid of Figure ·, projecting via (.), and perturbing by a zero-mean Gaussian noise vec-

tor elos with covariance Σe as described above. In Figure ·, a velocity field is predicted using

Method A with three values of the regularization parameter α. Figure · shows the corresponding

predictions for Method B. In general, both predictors have difficulty resolving the discontinuity

(a violation of the assumption of uniformity within each pixel). For small α, both produce very

similar solutions (after all, as α approaches zero, the predictors are equivalent). As α increases, the

respective side constraints come into play. In Figure ·, the preferred solution is the minimum-

l2norm , while in Figure ·, the solution exhibits smooth transitions between neighboring pixels.

The performance of the inversion is highly dependent on the geometry (i.e., the LOS direc-

tion vectors in row (pixel) j of A). Inversion demands that the direction cosines be sufficiently
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Figure 4·9: 1σ error ellipses for each of the predictors: Method A ( ), Method B ( ), and
Overlapping pixels ( ). The units are m/s.

dissimilar. Otherwise, not enough independent information is present to recover the cross-range

component.

Method A resolves the zero region better because it favors a zero solution. In the non-zero

region, Method A’s solution is very poor (see Figure ·c).

Prediction error

The data vlos for these predictions originates from an isr parameter fitter. The fitter also provides

an error estimate σ̂vlos
. Let these be the diagonal elements of Σe. Propagating this matrix through

equation . for each pixel j results in a 3× 3 covariance matrix Σ̂v,j , quantifying the uncertainty

in the predicted v̂j . These uncertainties are plotted in Figure · (for Methods A and B and regu-

larization parameter α = 15) in the form of error ellipses. Each ellipse corresponds (in a sense) to

a confidence interval (CI) of one standard deviation, i.e., there is a .% chance that v̂j lies on or

Only the horizontal components pe and pn are shown.
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within the ellipse. Thus a wider radius indicates a greater uncertainty in that direction.

The angle of an ellipse indicates cross-correlation of the components of �vecvj (in the geomag-

netic coordinate system in which it is evaluated). In Figure · every ellipse is oriented with respect

to the line-of-sight/transverse direction, suggesting strong dependence on the observation geome-

try.

The eccentricity of an ellipse indicates whether the predictor has a directional preference. In

Figure ·, the semiminor axis generally points toward the radar. That is, equation (.) is as-

signing lower uncertainty to the LOS component, or equivalent, the predictor can infer the LOS

component with greater confidence than the transverse component. Conversely, the semimajor

axis reflects the poor observability of the transverse component, which is inherent to the problem.

The semimajor axis is wider for Method B (solid lines) because of its wider support that L intro-

duces (compared to the point support of Method A). The error covariance is greater because each

v̂j is constrained to agree with neighboring v̂J\j ’s by the prior term in addition to fitting its own

local data.

The geometry of the problem strongly influences the uncertainty: those pixels farthest from the

radar (top row of Figure ·) incur the largest errors for two reasons. First, the measurement error

increases with the square of range. Second, because fewer samples fall within the pixels, which

have uniform volume w.r.t. ground distance (see Figures · and ·).

A third set of ellipses in Figure · represents the “overlapping pixels” predictor described in

Section .. In a few pixels (the closest to the radar), that predictor matches or surpasses the error

performance of Methods A and B. However, the uncertainty grows much faster with range than the

other two.

Figure · shows the L-curves for this simulation. The L-curve is a semi-quantitative strategy

for selecting an optimal level of regularization. The vertical axis measures total divergence; the

horizontal axis measures how well the prediction fits the data. The curve is plotted for a range of

α to characterize the tradeoff between smoothness (vertical axis) and data fit (horizontal). Closer

to the origin is better. This curve typically takes the shape of the letter “L.” The vertical segment

corresponds to low α, where data fit takes priority over smoothness. In this regime, increasing α

results in a smoother prediction that is still consistent with the data. In the horizontal segment, α

has less effect on the smoothness of the solution but results in an ever more inconsistent prediction.

In D, a 1σ confidence interval corresponds to a .% certainty level. Let σ2D = (σ2
pe + σ2

pn)1/2. Then the 1σ error
ellipse is the locus of points (σpe,σpn) corresponding to the 1σ2D confidence interval.
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Figure 4·10: L-curves for Methods A and B for the ground truth (cyan) velocity field pattern in
Figures 4·7 and 4·8. Data fit metric is on the horizontal axis. Roughness metric is on the
vertical axis.

The “optimal” α lies between these two extremes, at the knee of the curve if such a point can be

identified.

The roughness metric in Figure · for a given α is lower (i.e. better) for Method B while

the data fit is consistently better. This is not surprising, since Method B is designed to minimize

both metrics, while the side constraint in Method A, with its preference to shrink toward zero,

is anathema to the goal of accurately predicting the field! The knee of the curve is more easily

identifiable for Method A at α ≈ 15. We will now use this value in comparisons to qualitatively

assess the performance of the predictors versus α.

Other simulation cases

In the discussion above we justified using the field shown in Figures · and ·. This was moti-

vated by a particular phenomenon that is expected to occur in the ionosphere during substorms.

The advantage of spatial regularization is that it provides robustness in the presence of spatial

variation. Hence we now consider two variations of the earlier pattern: a uniform field v(x,y) ≡ v

(see Figure ·) and a very thin enhancement with oppositely directed velocity on the other side

of the arc (see Figure ·). The top (bottom) row shows a pair of predicted fields using Method A
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Figure 4·11: Uniform flow field. (a) L curve for Methods A and B. Sample reconstructions for
both methods are shown: (b) & (c) Method A, (d) & (e) Method B.

10
6

10
7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

0

 1

 3

 8

 15

28

53

 73

100

||v
los

 − A v||
2
2

||∇
 ⋅ 

v es
t|| 22

0

1

3

8

15

28

53

 73

100
 

 
Method A
Method B

(a)

−100 0 100
0

50

100

150

200

250

1 km/s

Ground distance east (km)

G
ro

un
d 

di
st

an
ce

 n
or

th
 (

km
) (b)

α=1.6

−100 0 100
0

50

100

150

200

250

1 km/s

Ground distance east (km)

G
ro

un
d 

di
st

an
ce

 n
or

th
 (

km
) (c)

α=15

−100 0 100
0

50

100

150

200

250

1 km/s

Ground distance east (km)

G
ro

un
d 

di
st

an
ce

 n
or

th
 (

km
) (d)

α=1.6

−100 0 100
0

50

100

150

200

250

1 km/s

Ground distance east (km)

G
ro

un
d 

di
st

an
ce

 n
or

th
 (

km
) (e)

α=15

Figure 4·12: Shear with field reversal inside the arc. (a) L curve for Methods A and B. Sample
reconstructions for both methods are shown: (b) & (c) Method A, (d) & (e) Method B.
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(Method B) for both low and high values of α.

Figures ·a and ·a show the L-curves for each of these two variations. Some general ob-

servations can be made pertaining to both. As before, Method A reaches a point of diminishing

returns when it begins to emphasize smallness over data fit. The L-curve levels to horizontal and

the predicted field approaches zero. By comparison, the L-curve for Method B is closer to the origin

for all values of α.

The uniform field (Figure ·) presents no challenge for either predictor, since uniformity is an

important assumption in its design. But when the regularization “kicks in,” Method A defeats itself

by approaching the zero field. More importantly, the “shrinkage” in Method A dramatically alters

the direction and overall shape of the predicted flow pattern. It is this overemphasis of the side

constraint that leads to the horizontal segment of the L-curve. By comparison, Method B preserves

the uniform direction of v̂ for all α, and the L-curve is practically vertical.

Turning now to the shear flow case (Figure ·), the discontinuity is even more difficult to

resolve than the step function considered previously. Though reconstruction errors do extend be-

yond the position of the discontinuity (again due to the relatively wide support of the divergence

operator), both methods perform best where the underlying field matches the assumption of uni-

formity. In particular, the top row of predictions is nearly perfect. Around α = 15 (Figure ·e),

Method B comes closest to the true field. For higher values (not shown), the solution begins to

approach something like solenoidal flow (i.e., the ideal solution if ∇ · v = 0 exactly). Hence the

knee (albeit slight) located around α = 15 in panel a. The differences in the L-curves for this case

are not as dramatic, but the same general observations apply: Method B performs better, i.e., it is

consistently both smoother and a better fit to the observed data. Furthermore, the constraint of

Method B (approximately divergence-free flow) constitutes a prior model informed by knowledge

of the physics of the process.

4.5 Case studies

The following examples cover the canonical substorm phases: following a rapid onset, there is a

period of growth, then expansion of large auroral structures, and finally a long recovery phase in

which the flow slowly returns to a steady background field as the auroral activity diminishes. In

many cases, the results indicate a coincidence of flow shears with auroral boundaries, consistent

with theory.

We validate our estimates by generating composite images of velocity with other observations.
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Figure 4·13: Examples of observed correlations between |vi | and Ti in agreement with equa-
tion (.).

For instance, since in the F-region altitudes from – km the ion energy equation is dominated

by frictional heating and collisional cooling, there is a direct relation between the ion temperature

Ti and speed v = |v| (St.-Maurice et al., ):

Ti =
v2Mn

3kB

[(
νin

Ωi

)
+ 1

]−1

+ Tn, (.)

where Mn is neutral mass, kB is Boltzmann’s constant, νin is ion-neutral collision frequency, Ωi is

ion gyration frequency, and Tn is neutral temperature. This relationship was frequently observed

during experiments, for instance in Figure ·. The velocity vectors (arrows) were computed from

LOS measurements as described in Section .. Ion temperatures were extracted (one per beam) at

an altitude of ∼ 240 km and interpolated to form contour plots. These plots generally agree with

equation (??), with hotter regions corresponding to faster flows and cooler regions having lower

velocities.

Figure · is a scatter plot of ion temperature versus speed. While there is some spread, the

parabolic trend suggests a relationship much like equation (??). The red line plots equation ??

directly using neutral parameters computed using the NRL-MSISE- empirical model (Picone

et al., ).

This will be a common theme throughout the following case studies. Several examples are

chosen that are representative of the expected behavior of aurora and ion flow fields during sub-

storms. Occasionally the estimator(s) generate what can plainly be judged are artifacts, resulting

from some violated assumption either in the physics of the process (e.g. very small vap) or in the


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Figure 4·14: Observed ion temperatures versus speed. The red line plots equation ?? using
neutral parameters obtained from the MSIS model.

discretization or inversion (i.e. inadequate spatial/temporal resolution or over-/under-smoothing).

In such cases, we offer alternative hypotheses and suggestions for revising the technique to resolve

such pathological cases.

In addition to ion temperature, we also generate composite images of aurorae measured by a

dasc at Poker Flat. Other remote sensing diagnostics do not yield themselves to composite imaging,

but these data (including meridian-scanning photometer (msp), magnetometer, Fabry-Pérot interfer-

ometer (fpi) data) provide further context for studying the events captured in our experiments. The

optical portions of these images are generated by projecting the portion of the all-sky images that

intersects with the PFISR fov and converting to cartesian coordinates assuming a fixed emission

height of  km.

4.5.1 26 March 2008

In an experiment run March , PFISR was operated in the -beam mode of Figure ??. PFISR

sampled the full array of  beams (“frame”) every  s, on two interleaved frequency channels: ()

an uncoded  µs pulse (to probe the F-region), and () an alternating code (to probe the E-

region). Since this study is restricted to F-region convective flow, only measurements from the

uncoded channel are used. Treating each beam direction separately, amisr forms the raw iq (volt-
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Figure 4·15: Magnetometer traces for 26 March 2008, from Poker Flat.

age) signals then integrates these to form range-gated acfs (complex power signals). A nonlinear

isr fitter then generates estimates at each sample point of the plasma parameters Ne (electron den-

sity), Te (electron temperature), Ti (ion temperature), and vlos (line-of-sight projection of ion drift

velocity). (Other parameters affecting the theoretical acf are modeled rather than estimated.)

Example #1: The three canonical substorm phases

The optical readings from this night bear the signature of a classic substorm. Figure · fea-

tures keograms from the msp located at Poker Flat, tracking brightness versus elevation on four

bands: . nm and . nm (corresponding to emissions resulting from precipitating electrons),

. nm (corresponding to proton precipitation), and . nm (corresponding to ionization and

photochemical emissions). A large structure is rapidly propagating southward from –UT

(growth phase) before a sudden burst of brightness, particularly in the . nm band (expansion).

The subsequent recovery phase is a lengthy return to normalcy.

We compare our derived ion drift velocities to msp data in Figure ·. Plasma drift accelerates

rapidly leading up to the start of the growth phase. The drift speed then drops suddenly just as

the luminous region comes into view of this “pixel,” followed by a return to the prior speed with

the exit of the luminous region. At the start of the expansion phase, the brightness and velocity

once again have an inverse relationship. During the recovery phase, however, there may be a weak

direct correlation.





10:00                11:00                 12:00                  1:00        (UT)

6
3
0
0
  

  
  

  
 4

8
6
1
  

  
  

  
 4

2
7
8
  

  
  

  
 5

5
7
7

N

S

10000

0  

2000 

0  

100  

0  

2000 

0  

R
ay

le
ig

h
s

30
60
90

120
150

30
60
90

120
150

30
60
90

120
150

30
60
90

120
150

(deg. el.)

Figure 4·16: MSP data from four bands for 26 March 2008. The substorm begins around
1145 UT.
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Figure 4·17: MSP data (blue) and predicted ion speed (green, using overlapping pixel method)
close to the time of substorm onset, 26 March 2008.
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Figure 4·18: All-sky images from Poker Flat showing southward-moving substorm onset activ-
ity. The crosses represent 5× 5 + 1 PFISR beam directions for this experiment.

Radar: 11:38:37 - 11:40:41 UT

Camera: 11:38:38 UT Camera: 11:39:38 UT Camera: 11:40:38 UT

Radar: 11:46:52 - 11:48:56 UT

Camera: 11:46:58 UT Camera: 11:47:38 UT Camera: 11:48:18 UT

Radar: 11:53:04- 11:55:08 UT

Camera: 11:53:18 UT Camera: 11:53:58 UT Camera: 11:54:38 UT
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EXPANSION PHASE
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Figure 4·19: Composite images of substorm auroral activity and PFISR-derived ion flow fields
for the three substorm phases.
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Finally, we examine the composite optical/radar wide-field images. Figure · shows the field

of view for this experiment (white crosses represent PFISR beams) vis-a-vis the nearby dasc. This

instrument operated at a cadence of  s in its white light (unfiltered) mode. The image sequence

depicts the rapid onset of an expansion phase: a sudden and bright burst lasting one to two min-

utes.

Expanding our scope, Figure · depicts isolated examples from each of the three substorm

phases: growth, expansion, and recovery. PFISR’s integration time was two minutes, compared to

the dasc cadence of 20 s, so each flow field estimate corresponds to multiple dasc frames. We get

some information here about

• Fine-scale spatial relationships between brightness and electric field,

• How the “average” dynamic behavior within a pixel may affect prediction,

• Once PFISR estimates of Ne and fpi data are accounted for, taking out neutral wind, separat-

ing out electric field effects from convective disturbances.

Example #2: Arc activation

Figure · shows the activation of an auroral arc about  minutes before substorm onset. When

the arc passes through the radar fov (white crosses), ion temperature and drift velocity are super-

imposed on a magnified portion of the all-sky images (Figure ·). Again brightness and velocity

appear anticorrelated. In panels a & b, the high-temperature regions correspond to low brightness

at the altitudes shown ( km optical,  km temperature). In panel a, there are two distinct

arcs, between which the velocities are generally tangentially aligned. When the arc begins to di-

minish in panel c, both the temperature and velocity drop rapidly in that region. This again follows

the relationship given by (.) and is also consistent with the polarization effect described in Sec-

tion ..

Example #3: A westward-traveling arc

Finally, on the same night, a wide, north–south-aligned arc traveled westward through the radar

fov (Figure ·). In panels a–c, as the arc moves into the rightmost edge of the fov, the velocities

subside and dramatically reverse direction. The direction of the flow parallel to the the eastern arc

boundary also suggests a polarization effect directed east.

Following that, the velocity field appears to rotate south-west in sync with the progression of
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Figure 4·20: Example #2. DASC images for an arc activation occurring – – Example #2. All-
sky images from Poker Flat of the auroral activation event (26 March 2008) described in
Section 4.5.1. White crosses represent PFISR beams.

Radar: 11:30:22 - 11:32:25 UT
Camera: 11:31:18 UT

Radar: 11:32:26 - 11:34:29 UT
Camera: 11:33:18 UT

Radar: 11:34:29 - 11:36:33 UT
Camera: 11:35:18 UTa) b) c)

Figure 4·21: Example #2. Detail of Figure 4·20. Recovered flows and ion temperatures for the
arc activation of Section 4.5.1 are superimposed on DASC images.
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Figure 4·22: Example #3. A westward-traveling north-south arc and the associated ion tem-
perature and flow fields.
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Table 4.1: Parameters for the PFISR experiments conducted 26 Mar 2008 and 24 Mar 2009.

Mar  Mar 
Beam positions 5× 5 + 1 5× 5 + 1
Pulse type Long pulse + coded (unused) Long pulse
Pulse length  µs  µs
# channels used  
Integration time min  s

All-sky wavelengths unfiltered ,  Å

the arc. Once the arc is finally clear of the fov, the predicted velocity field appears to return to it’s

previous state, drift under the influence of an ambient electric field.

4.5.2 24 March 2009

In an experiment run March , PFISR was operated in the same -beam mode. The experi-

ment from above was altered to improve the statistics of the readings. Two frequency channels were

used, each now using an uncoded 480 µs pulse. Every 5.5 s, returns were sampled from  pulses

on each channel in each direction, The auroral activity of this night generated returns with high

SNR, allowing estimates of LOS velocities from relatively few samples. Table . summarizes the

setup for the two experiments.

The results described in this section were obtained during a 1 h period using a radar integration

time of 30 s, corresponding to ∼ pulses-per-beam. In addition to LOS estimates, the isr fitter

also supplies error covariances. These values provide the diagonal elements of Σe. Using Method B

(divergence-constrained regularization), the velocity fields were reconstructed with regularization

parameter α = 5. (This value was chosen based on trial and error.)

The predicted fields are superimposed onto optical images captured by the nearby dasc. The

camera captured both 557.7 nm and 630 nm wavelengths, but only the 557.7 nm data is displayed

in the following figures. At a cadence of  seconds, the all-sky imager captures dynamics with

timescales comparable to those captured by the radar reconstructions. The velocity fields and

optical data are mapped to a common plane on the page by assuming an auroral emission altitude

of 120 km.

Figure · shows four contiguous 30 s flow field predictions in the vicinity of a stable east-west

aligned arc of ∼ 50 km width. Panel a shows a relatively uniform flow in the magnetic westward

direction, tangential to the arc boundary. The bulk drift is slightly slower within the arc, consistent

with a reduced electric field within the region of increased conductivity. Panels b and c depict the

development of a flow reversal near the poleward boundary of the arc. The circulatory appearance
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Figure 4·23: Co-registered ion convective flow fields and auroral forms constructed at 30 s
cadence. Panels b and c illustrate the formation of a transient region of reversed flow near
the poleward boundary of the arc.

Figure 4·24: Another example similar to Figure 4·23.

of the flow field is reminiscent of Figure ·e. In Panel d, the flow resumes its uniform westward

course.

Figure · is a second example of a sharp flow shear apparently developing very rapidly (30 s)

in the vicinity of a pre-existing auroral form. Rapid localized fluctuations in convective flow have

previously been identified by Bristow () using the SuperDARN HF radar network. Their cause

remains unclear. If this is the case, the morphology is clearly under-sampled in time, as the rever-

sal appears only in one frame. Such rapid fluctuations are common throughout this experiment.

Figure · shows a longer sequence of flow field predictions during a period of dynamic auroral

activity. Although the correlation with auroral boundaries is less clear, we again see large fluctua-

tions in both magnitude and direction of flow, as well as the ephemeral appearance of strong flow

shears, throughout.

4.6 Discussion / General observations

We have demonstrated the capability of an electronically steerable ISR to predict F-region flow

fields. In order to achieve robustness in the presence of spatial variation, we chose to implement

regularization in the solution. In our analysis we compared the performance of two regularization
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Figure 4·25: A longer sequence illustrating the relationship between flows and auroral forms.
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functionals: Method A, with a penalty on large-magnitude solutions, and Method B, the “incom-

pressible flow” estimator with a penalty on local spatial variability.

Both estimators have trouble resolving a sharp discontinuity, such as that seen in the simulation

of Section . (Figures · & ·). Both perform well in regions of uniform flow. For large values of

the regularization parameter α, Method A shrinks to the zero field and in the process dramatically

alters the morphology of the solution. Method B enforces uniformity (locally) or approaches the

solenoidal solution (globally). Whether or not these solutions are realistic depends on the spatial

variability of the process under observation. It is therefore crucial to consider the effect of the regu-

larization parameter α on the analysis, whether it causes oversmoothing (Figure ·e), or whether

undersampling causes artifacts to appear as a result of the violated assumption of uniformity (Fig-

ure ·, panels b and d).

The accuracy of the velocity reconstruction depends heavily on the geometry of the problem.

Hence each pixel is characterized by a unique error profile (Figure ·).

In applying the estimation technique to PFISR measurements, we validated our findings by

comparing to a sequence of co-registered all-sky optical images from the same night. The optical

data were captured at a time resolution similar to the radar integration time, so that dynamics of

similar time-scale could could be compared. The salient features of these data are () a reduction

of convective flow within an auroral enhancement (de la Beaujardière and Vondrak, ) and ()

the generally parallel direction of the ion drift at arc boundaries, consistent with a polarization

effect within the arc (e.g. Lanchester et al., ).

The Tikhonov formulation adopted here is advantageous for a variety of reasons. It is capable

of handling the overdetermined problem. A smoothness constraint is straightforward to introduce

by penalizing large local differences in the solution. Through the data covariance matrix Σe, the

estimator accounts for the uncertainty inherent to all practical measurements. The second-order

statistics of the prior model are encoded in Σv, and the theory provides a measure of estimator

uncertainty via equation ..

Heinselman and Nicolls () develop an method of estimating velocity vectors from LOS

projections. However, their approach relies on a particular beam arrangement, with the goal of

determining velocities (equivalently electric fields) as a function of magnetic latitude. The re-

sult is a time-sequence of latitudinally distributed vectors. The technique described here is some-

what agnostic of beam arrangement, meaning that velocity fields can be obtained in experiments

not necessarily designed for that purpose (for instance, high-resolution ionospheric imaging, as in
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Chapter ). The reconstruction grid can be somewhat arbitrary too. The result is a time-sequence

of vector fields distributed in both latitude and longitude. The Heinselman/Nicolls approach is

analogous to slit-scan photography, if ours is compared to video imaging.

To emphasize the novelty of this approach, it is worth comparing the acquisition and estimation

procedure presented here to another method capable of estimating three dimensional F-region ion

flow. The tristatic EISCAT system receives three independent LOS projections of ion flow velocity

within a common volume. This allows unambiguous recovery of all three velocity components

within the volume. PFISR is a monostatic radar, and the recovery of vector velocity requires the

combination of neighboring measurements as described above. Although EISCAT is routinely op-

erated in a meridional scanning mode that provides estimates along latitude, PFISR’s electronic

steerability allows acquisition of a “snapshot” as described in Section . The monostatic arrange-

ment is inherently unable to resolve the full flow vector due to the limited amount of independent

information provided by neighboring measurements. The only way to resolve this ambiguity is to

introduce outside information. The Tikhonov method of regularization is a natural way to incor-

porate such information.

Exogenous information may come in the form of a physical model, e.g. a statistical model

(Sulzer et al., ; Hysell et al., ). It may also include ancillary data from separate instru-

ments (i.e. sensor fusion). For instance, if there is a reason to believe the direction of ion flow is

dominated by large-scale convection (e.g., if SuperDARN measurements indicate such a large-scale

flow), the solution can be “steered” to a preferred direction to make use of this assumption. The

solution is encoded with a directional preference by designing the a priori covariance matrix Q

such that the horizontal variabilities σ2
pe and σ2

pn reflect confidence in the estimate of the respective

components.

In this work, we have used coregistered optical images to provide a context for interpreting the

results. The optical brightness serves as a proxy for conductivity. Wherever an auroral arc occurs,

the conductivity is higher. In order to maintain current continuity, the electric field in this region

(and thus the drift velocity) is reduced. After identifying the arc boundary in the optical data, this

can be used by the estimator to segment the solution into regions with different prior constraints.

For instance, since we expect the plasma flow at the boundary of an auroral arc to be parallel to the

arc, we may tune the prior model to steer the solution in the appropriate direction. Rather than to

perform this tuning by hand for each image, such contextual information could be provided to the

predictor and automatically applied to its results.
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A notable feature of Figure · is the spatial heteroskedasticity of the error covariances. This is

due to the irregular sampling of the pixelization in Figure ·. That is, the measurement sample

points are determined by the radar geometry, and we have laid a uniform 4 × 4 grid over these

sample points. As a result, some pixels contain more measurements (i.e. better statistics) than

others. The velocity estimates in those pixels are more reliable than the poorly-sampled top row

of pixels. A sampling strategy based on homogenizing or reducing spatial uncertainty may help in

this case. The kriging variance is often used for this purpose.

Even when the pixelization accommodates the radar geometry, the course discretization cou-

pled with an implicit assumption of uniformity within each pixel is in direct opposition to the

goal of resolving spatial variability. Following the example of geostatistics in earlier chapters, a

large-scale trend with a small-scale random effect is a sensible approach. In the auroral zone,

there is often a uniform background convection superimposed with variations from ionospheric

phenomena. Like Tikhonov regularization, this also provides a natural way to incorporate prior

information in the form of statistical parameters.

Machine-learning and classification approaches also come to mind. For instance, in the sim-

ulation in Section ., the optimal pixelization would be two triangular pixels separated by the

boundary indicated in Figures · and ·. As few as one velocity estimate might be recovered per

segment.
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Chapter 5

Global data: Mapping total electron content

The preceding chapters have focused on mapping observations and their uncertainties in space.

Chapter  presented the statistical theory of optimal prediction within the framework of spatial

statistics. Chapter  applied optimal spatial prediction to map spatially-dispersed radar observa-

tions to unobserved locations. Chapter  demonstrated, using a link to inverse theory, the use of

neighboring data to constrain the recovery of unobserved vector components.

This chapter serves as a “jumping-off” point for future studies. These suggestions are, to vary-

ing degrees, developed conceptually, awaiting implementation. The first suggestion, especially.

Like the previous two chapters, it focuses on an application of ionospheric aeronomy.

5.1 Total electron content

Total electron content (TEC) is an important characteristic of the ionosphere, with interest stem-

ming mainly from the role of the ionosphere in degrading the radio signals between satellite and

ground-based transceivers. Where precision is a critical requirement (e.g. in geolocation, satellite

tracking, instrument calibration), it is desirable to map, monitor, and mitigate for the effects of

TEC disturbances.

Because radio signals propagate more slowly through the ionosphere, it is necessary to correct

for this delay at the receiver end. Particularly challenging is the nonuniform and complex spatio-

temporal behavior of the ionospheric plasma. A message-bearing radio wave encounters innumer-

able pockets of concentrated and rarefied plasma, each differential of conductivity contributing to

the total index of refraction and thus delay. Hence the need for an independent estimate of TEC,

whether or not the goal is to study ionospheric density in particular.

For example, the network of GNSS relies on accurate timing, and atmospheric effects are a major

source of performance loss. Many receivers are equipped with augmentation systems for detect-

ing or correcting such problems. The Jet Propulsion Laboratory maintains the WAAS, including a

network of static, ground-based GNSS receivers, which provide coverage across the United States.
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Users of WAAS-enabled devices can compute a real-time local TEC estimate from a grid of zenith-

mapped estimates. Correction for atmospheric effects ultimately leads to more precise location

services. WAAS also monitors the quality of estimates on the network’s receivers, detects irregular

ionospheric conditions, and warns users when these effects compromise the reliability of the sys-

tem (Sparks et al., a). The latest version (WAAS Follow-On Release ) uses kriging to assign

zenith-mapped TECs to each gridpoint, and kriging variances are used to assess the system’s re-

liability (Sparks et al., b). Because navigation is often a safety-critical application, WAAS is

intentionally conservative in its error estimates.

Systems like WAAS use GNSS receivers to diagnose the system they augment. Similar receivers

are often used to study the ionosphere. MIT Haystack Observatory hosts globally referenced TEC

maps drawn from observations on a large network of GNSS receivers (Rideout and Coster, ).

Quite the opposite of WAAS, these maps are intended to be analyzed for the study of large-scale,

regional, and global geophysical events. The associated software, MAPGPS, was developed with

the goal in mind of detailed mapping, and less emphasis was placed on detecting and describing

error.

MAPGPS results are available through the Madrigal Database http://cedar.openmadrigal.

org/ as vertical TEC estimates registered to a regular latitude/longitude grid wherever GPS mea-

surements are available. Summary plots are also provided. Although these high-level data are

well-suited for visual inspection, the intervening subsampling and truncation constitute a non-

trivial destructive transformation. Lower level data are available upon request. These are not

directly from the sensors; rather they represent an intermediate stage of MAPGPS immediately

before mapping to a regular grid.

5.2 Description of the data

The basic data product at this level is an estimate of slant TEC, defined as the electron density

within a 1 m2 cylinder, integrated along the line-of-sight from receiver r to satellite s:

slTEC ,

lsU
lr

ne(x(l))dl [m2], (.)

where lr and ls are the positions of receiver and satellite, respectively, ne is electron density in

electrons/m2, and x(l) indicates the the line-of-sight. It is usually reported in TECu, where 1 TECu

= 1016 electrons/m2.
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Since (.) depicts a projection, it is natural to consider tomographic reconstruction as an iono-

spheric diagnostic. This would, after all, recover the three-dimensional structure of the ionosphere.

And while a D representation would presumably lead to more accurate navigational corrections

(by directly computing a discrete approximation of (.)), the information needed to describe such

a model in sufficient detail could easily exceed the storage or bandwidth limitations of a real-time,

auxiliary network like WAAS. Hansen () discusses this scenario quite thoroughly. It is worth

adding that GPS satellites provide irregular surface coverage, and their continually shifting ray

paths as they orbit Earth are susceptible to subtle effects not modeled in the receiver’s internal

ephemeris, making ionospheric tomography a challenging, though not insurmountable, problem.

Although a D tomographic reconstruction is undoubtedly an asset to aeronomic study, it is also

considerably complex on a large scale. Also, it is not obvious whether a practical system would

benefit from a tomographic approach over a simpler model.

Indeed the prevailing approach involves collapsing the influence of the entire ionosphere to a

limited region and assuming a D ionosphere. There are a variety of such models (e.g., see Coster

et al., ). The simplest and most common is the thin shell model. The ionosphere is collapsed

to an infinitesimal spherical shell, concentric with Earth and having radius Re + hm, where Re is

Earth’s radius, and hm is the altitude of the shell (roughly coinciding with the ionospheric peak,

∼ 350 km to 450 km for high latitudes).

Figure · illustrates the geometry of this system. When receiver r receives a signal from satel-

lite s, the point along x(l) where the signal’s path intersects the thin shell is an ionospheric pierce

point (ipp). The cumulative effect of the wave’s path through the ionosphere is reduced to an in-

stantaneous effect at the ipp. This allows a common mapping of TEC to the zenith (vertical TEC, or

vTEC), independent of a receiver’s location.

For each receiver-satellite pair, (.) can be transformed to an integral with respect to height:

slTEC =

hs∫
hr

1− (Re cos(el)
Re + hm

)2−1/2

ne (xrs(h))dh, (.)

where el is the elevation angle of the receiver. This function integrates ne along the line-of-sight

r to s, but xrs is a function of height. The obliquity factor
[
1−

(
Re cos(el)
Re+hm

)2]−1/2
accounts for the

reparameterization.
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Figure 5·1: Geometry of TEC observations by ground-based GNSS receivers.

Signifying the vertical TEC as the special case when el = 90◦, i.e.

vTEC ,

hsU
hr

ne(h)dh.

the slant TEC at some other position s0 is approximated by mapping vTEC to s0 in a similar way

to the Earthbound case:

ŝlTEC =

1− (Re cos(el)
Re + hm

)2−1/2

vTEC. (.)

The data obtained from MIT Haystack contains estimates of both slant and vertical TEC. They

also include latitude and longitude coordinates for each receiver and ipp, for a thin shell at altitude

335 km.

5.3 Global Prediction of TEC from GNSS measurements

The data consist of slTEC estimates, error estimates, and the latitude and longitude positions of

the corresponding ipp’s. Details of that stage of estimation are discussed in Rideout and Coster

(). These data are registered in 30 s intervals, consisting of typicallyN ∼ 15000 TEC estimates.

covering the globe. The goal is

• to generate predictions based on these data,





Figure 5·2: Estimated zenith-aligned total electric content (vTEC) from 24 March, 2009. Each
point is a receiver-satellite pair in the network, plotted at the corresponding ionospheric pierce
point (IPP). North America is covered with receivers and very densely sampled, while the
oceans points above the ocean are few and associated with islands.

Figure 5·3: Predicted vTEC with a transparency mask mapped to σ̂2
OK .
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• to map the predictions, and

• to provide an intuitive visual cue of the uncertainties.

As in previous chapters, this last objective sets kriging apart from deterministic interpolation.

The “variance” component is an important distinguishing feature of kriging, and of spatial statis-

tics in general, to quantify uncertainty and how it relates, for example, to the the sample coverage

of a region.

For instance, consider the data set of Figure ·, where each vTEC is plotted versus position. In

this case, much of the Earth is completely unsampled. In the absence of data, the ordinary kriging

predictor shrinks to the estimated mean µ̂ and kriging variance reaches its maximum. To relay

this level of uncertainty to the viewer in an intuitive way, we use transparency as a raster image

equivalent of an error bar. Transparency is an intuitive option (Wilkinson, ). In Figure ·,

each pixel is assigned a color (ŷok(·)) and a transparency (∝ σ̂2
ok(·)). This preserves detail where it is

available without unduly suggesting a trend not supported by the data.

Finally, the shortest distance between points on a sphere is the great-circle arc between them.

(Euclidean distance can be an approximation for small distances and near the equator.) That is

for standpoint s = (φs,λs) and forepoint f = (φf ,λf ) on a sphere, where φ and λ are latitude and

longitude, respectively, the proper distance metric in the thin shell model is

dGC(f , s) = (Re + hm)arctan
(

nf ×ns
nf ·ns

)
, (.)

where Re + hm is the radius of the thin shell (Re = Earth radius, and hm is the height of the sphere

above Earth’s surface) as above, and nf ,s are unit normal vectors at the corresponding (φ,λ) coordi-

nates. The cross product and dot product can be evaluated in cartesian coordinates following the

usual transformation from the unit sphere:

n =

cosφ cosλ
cosφ sinλ

sinφ

 . (.)

5.4 Modeling the thin-shell ionosphere

Process model

The vTEC on the ionospheric thin shell is modeled with a mixed effect model

Y (s) = XT(s)β + δ(s) (.)
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with a linear mean effect XTβ and random spatial effect δ ∼ GP (0,CY ), a Gaussian process specified

by a covariance function CY . The fixed effect must be periodic on the sphere in order to avoid

introducing discontinuities. In cartesian coordinates, X is often a polynomial of the coordinates,

The only polynomial satisfying the periodicity requirement is the constant function. Ordinary

kriging will do. Other explanatory variables could also be considered, in which case X(s) is a more

complicated function, and universal kriging is needed. Finally, the covariance function should

be one of those identified as valid on the sphere. Jun and Stein () identify some isotropic

covariance functions that are also valid on the sphere. The exponential covariance is one of these,

and it is used in this example.

Data model

The vTEC estimates provided within MAPGPS at this stage are accompanied by the slant TEC

estimates from which they were derived, along with the associated error. Propagating the slant

error through (.), the corresponding vTEC error is

σ2
v =

1− (Re cos(el)
Re + hm

)2σ2
sl . (.)

Gathering these values into a diagonal matrix Σe provides the covariance function for our assumed

Gaussian data model:

Z |Y ∼N (0,Σe). (.)

5.5 Prediction

The model above describes a Gaussian process. Stack vTEC into a vector Z and error variances into

the diagonal matrix Σe. Prediction can then be carried out at an arbitrary reconstruction point s0

by following the universal kriging (UK) procedure:

. Since error variances are known, we form a preliminary (weighted least squares) estimate of

the fixed effect coefficients: β̂
WLS

=
(
XTΣ−1

e X
)−1

XTΣ−1
e Z,

. Fit the variogram of the residuals: γ̄
(
Z −XTβ̂

WLS
; θ∗

)
.

. Revise the mean estimate via gls using (CZ )ij = CY (si ,sj ; θ∗) +Σe:

. Evaluate the UK predictor and variance at each s0:

ŷ(s0) = β̂
GLS

+ cTY (s0)C−1
Z

(
Z − β̂

GLS
X
)
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σ̂2
uk(s0) =CY (s0,s0)− cY (s0)TC−1

Z cY (s0)

+
(
x(s0)−XTC−1

Z cY (s0)
)T (

XTC−1
Z X

)−1 (
x(s0)−XTC−1

Z cY (s0)
)

5.6 Reassessment of an earier case study

Having available a global dataset directly analogous to Chapter ’s maps of radar-derived elec-

tron densities presents an irresistible opportunity to revisit those results and discover how they fit

within a global context.

In Chapter  we noticed some congruencies between radar and optical data. Although regions

of enhanced ionization are often found near auroral arcs (when the latter are present), and although

a reasonable case can be made for the association of certain flow fields with simple auroral mor-

phologies, these relations need not always hold. As seen in previous chapters, such models often

do bear reliable predictive and explanatory value. However, the ionosphere is frequently driven

to an excited state (e.g. during a substorm) such that idealized assumptions are invalid. Optical

forms need not map directly to ionization.

On the other hand, TEC is explicitly related to electron density via the integral
T
dh ne(h). There

should be a close correspondence between the two. In particular, by forming a discrete approxima-

tion of the above integral, we can compare directly the estimate of vertical TEC by two instruments:

PFISR measuring electron density versus height, and the GPS receiver network with TEC mapped

to zenith. Further, whenever a GPS raypath passes through the radar f.o.v., we can approximate

the slant TEC integral (.).

24 March 2009: Ionospheric structure around an auroral arc during growth and expansion phases
of a magnetic substorm

On this night, a stable auroral arc held its position within PFISR’s field of view (f.o.v..). Around

 UT, the spatial configuration of Doppler velocities led the fitter to suggest a sudden, transient

reversal of plasma flow.
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(a) 08:02:00 UT

(a) 08:02:30 UT

Figure 5·5: Comparisons of GNSS TEC (ordinary kriging), optical data, radar-derived flow field,
and radar Ne. Time sequence from 24 March, 2009. Time resolution: ∼ 30 s
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(b) 08:03:00 UT

(c) 08:03:30 UT

Figure 5·5: Comparisons of GNSS TEC (ordinary kriging), optical data, radar-derived flow field,
and radar Ne. Time sequence from 24 March, 2009. Time resolution: ∼ 30 s
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(d) 08:04:00 UT

(e) 08:04:30 UT

Figure 5·5: Comparisons of GNSS TEC (simple kriging), optical data, radar-derived flow field,
and radar Ne. Time sequence from 24 March, 2009. Time resolution: ∼ 30 s
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Figure 5·6: High-resolution GNSS TEC (ordinary kriging) for the same approximate time period as the previous figure: 24 March, 2009. Time
resolution: 5 min.
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Figure 5·7: High-resolution GNSS TEC (ordinary kriging) for the same approximate time period as the previous figure: 24 March, 2009. Time
resolution: 5 min.
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Figure 5·8: High-resolution GNSS TEC (ordinary kriging). Different date: 26 March, 2008. Time resolution: 10 min.
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(f)

Figure 5·7: Low-resolution GNSS TEC (ordinary kriging). Different date: 26 March, 2008. Time resolution: 10 min. This image uses data from
all receivers, but maps to low resolution.
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5.7 Challenges particular to global prediction

In some respects, global prediction is similar to spatial prediction on the small, flat domain, differ-

ing (rather importantly!) in two fundamental attributes of Earth: size and shape. The diagram of

Figure · summarizes the effect on geostatistical modeling of global data. The size of the domain

Ds need not be a fundamental difference, if the measurements’ support scales proportionally with

the domain size. Instead, our geospatial measurements tend to be fixed at human-order scale, even

as they spread to global coverage. resolve processes on a scale similar to those of a smaller domain

may require very high spatial resolution. Problems of shape emerge from the spherical topology of

global data, which places restrictions on what models are valid.

Size

Latent processes. Previous chapters assumed that distance was sufficient to predict natural pro-

cesses over a given domain. But the dependence among sites may depend more on environmental

factors (such as temperature or elevation) that are not well-predicted by distance (Le and Zidek,

, p.). On the global scale, these factors may interact in complex ways. If these can be rea-

sonably incorporated, the process model (.) should be augmented to reflect this dependence.

Data aggregation. It may be possible to directly reduce the number of data needed. This may

involve random or systematic subsampling. Or nearby data can be combined into aggregate mea-

surements. Of course, this reduces the effective spatial resolution.

Data reduction. Kriging on limited neighborhoodsis a divide-and-conquer technique, essen-

tially restricting the size of the problem by throwing away or reducing the influence of data out-

side a local neighborhood, then building up the global prediction from the predictions on the

sub-regions. Neighborhood selection is a problem-specific challenge: depending on the process

model and the dispersion of data, prediction restricted to the smaller domain is not guaranteed

to be consistent with respect to the full problem. If the dimensions of the neighborhood fall well

below the process scale, the neighborhood’s covariance matrix CZ may be singular to within ma-

chine precision. Finally, even if every subproblem on every neighborhood is valid and soluble, the

Kriging on a neighborhood is distinguished from kriging locally or regionally. In the latter case, the goal is only to
interpolate within the region. The neighborhood method assembles a prediction from smaller sub-region predictions,
explicitly limiting the number of data used in each sub-region
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(a) 09:20:00 UT

(a) 09:20:30 UT

Figure 5·9: (Left) GNSS-TEC. (Right) ISR. 10 November, 2007.
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(b) 09:21:00 UT

(c) 09:21:30 UT

Figure 5·9: (Left) GNSS-TEC. (Right) ISR. 10 November, 2007.
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(d) 09:22:00 UT

(e) 09:22:30 UT

Figure 5·9: (Left) GNSS-TEC. (Right) ISR. 10 November, 2007.
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(f) 09:23:00 UT

(g) 09:23:30 UT

Figure 5·9: (Left) GNSS-TEC. (Right) ISR. 10 November, 2007.
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(h) 09:24:00 UT

(i) 09:24:30 UT (j) ISR

Figure 5·9: (Left) GNSS-TEC. (Right) ISR. 10 November, 2007.
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(k) 09:25:00 UT

(l) 09:25:30 UT

Figure 5·9: (Left) GNSS-TEC. (Right) ISR. 10 November, 2007.
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(m) 09:26:00 UT

(n) 09:26:30 UT

Figure 5·9: (Left) GNSS-TEC. (Right) ISR. 10 November, 2007.
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(o) 09:27:00 UT

(p) 09:27:30 UT

Figure 5·9: (Left) GNSS-TEC. (Right) ISR. 10 November, 2007.
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Figure 5·10: Geostatistical modeling of global data. Compared to local domains, estimation
and prediction on the globe are complicated by (1) a) very large-scale spatial processes ren-
dered unobservable by individual instruments, b) smaller-scale processes are not captured
by aggregated data (effective spatial resolution), and (2) the topology of the globe presents
further modeling constraints.

aggregated global solution does not necessarily have a valid covariance matrix.This can introduce

non-physical artifacts in ŷ(·).

Approximating CZ . The dominant factor of memory and computational requirements of kriging

is storage and inversion of the covariance matrix. Form scalar measurements, a naı̈ve implementa-

tion of the kriging predictor stores them×m covariance matrix CZ . Computing the inverse requires

O(m3) operations. Strategies to reduce the computational complexity of kriging follow a common

theme: reduce the rank of CZ . For example, covariance tapering replaces CZ with a sparse ap-

proximation so that Cij = 0 if the distance between points i and j is sufficiently large (Furrer et al.,

).
The global covariance matrix may not be valid, even if those of the neighborhoods are. (Paciorek and Schervish, )

describes how to construct a valid, nonstationary covariance function from linear combinations of stationary covariance
functions.
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Low-rank representation. Often, however, CZ is inherently structured such that it possesses an

equivalent, low-rank representation. For example, Cressie and Johannesson (, ) develop

a fixed-rank version of kriging, relying on the well-known Woodbury matrix identity to reduce the

operation count of the inversion to O(Nk2), where k ≤ N . Wikle () discusses choices of basis

functions and the advantages of choosing a low-rank representation.

Aside from these kriging-specific solutions, general recommendations for efficient computing

may also improve performance. All the kriging implementations in this work use in-place eval-

uation to avoid making multiple copies of CZ in RAM. Also, large data structures can be thrown

away when they are no longer needed. A library of efficient subroutines is invaluable, particularly

for linear algebra and optimization. Modern programming environments (such as MATLAB and

the Python package NumPy) often use these to facilitate cache-optimized vector operations (such

as element-wise arithmetic primitives), and it is worth familiarizing oneself with those features as

well.

Non-euclidean distance

Model validity. Kriging on the sphere is different from kriging in cartesian coordinates. First, the

topology requires the prediction to be periodic. The (deterministic) trend model must be periodic

to satisfy this requirement. Huang et al. (); Curriero () also show that many covariance

functions that are widely used on the plane fail to generate positive definite matrices, as required

for kriging, on the sphere.

Computation. Since distance is measured along the great circle arc between points, computing

distances on the sphere is slightly more expensive. Although modern computers can efficiently

process vector operations, the additional cost could be significant for very large data.

Nonstationarity. A process with covariance function specified in spherical coordinates is inher-

ently nonstationary (Jun and Stein, ). Note the strong latitude (φ) dependence in (.). The

distance between two meridians varies with latitude. This makes fitting scale parameters more

difficult, for instance. One approach to this form of nonstationarity is to develop a spatial model

for the parameters (scale, shape, etc.) of the process model, and allow these to be estimated, say, at

different latitudes.
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Multiresolution modeling. The structure of the ionosphere is indeed nonstationary. This is espe-

cially so on the global scale, with regions and events characteristic of particular latitudes, altitudes,

local time, and season. Yue et al. () characterize the statistics of spatiotemporal dependencies

in the ionosphere at various scales, confirming the nonstationarity of global geophysical processes.

Nychka et al. () discuss the implications of this on prediction and propose multiresolution

methods to model global nonstationarity. (See also Ferreira and Lee ().) Multiresolution pro-

cess models incorporate

5.8 Suggestions for improvement

In Section ., several model assumptions were made. The mean effect XTβ was assumed constant,

but the ionosphere is quite often (and successfully) modeled by expanding in terms of spherical

harmonics (e.g., Venkata Ratnam and Sarma, ). Replacing the columns of X with basis func-

tions of the type ∑
n

∑
m

Pnm(sinφ)(anm cosmλ+ bnm sinλ

may better represent the trend (large-scale variability) when evaluating β
GLS

.

The ionosphere is strongly influenced by the position of the sun, making time an important

explanatory variable. The process model should also include a component based on time.

Additionally, as demonstrated in Rideout and Coster (), unmodeled temperature depen-

dence in each receiver may introduce systematic bias in the vTEC estimates that comprise the

“data” Z in (.). As described in Chapter , predicting from estimates is a sub-optimal approach

for precisely that reason: estimates are subject to both random errors and systematic biases, which

may (or may not) be adequately compensated, and which may (or may not) be represented in the

accompanying error estimate. The predictor should include () a more comprehensive model in-

corporating the stages of processing described by Rideout and Coster () and () an allowance

of leeway in estimating the parameters of that conversion. Namely, a Bayesian hierarchical model

(Banerjee et al., ). Examples in similar applications include Wikle et al. (), Cressie et al.

(), Kang and Cressie (), and Zidek et al. ().
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Chapter 6

Suggestions for Further Study

In Chapter , we examined the capabilities of an electronically steerable isr to resolve both fine and

dynamic features of the ionosphere. Using insight gleaned from spatial statistics, we demonstrated

a linear filter approach to predict electron density at unmeasured locations.

One powerful application of this method of direct imaging is that we can change the integration

time (hence the dwell time) offline, during the analysis stage. That is, the experimenter is free to

adapt the sample rate to the dynamics of the measurements. So, for instance, during periods of

low activity (low SNR), we can crank up the integration time for more accurate estimates without

suffering the loss of (effective) spatial resolution due to temporal blurring (since little of interest

has occurred within the frame, presuming low activity is associated with low-sped processes and

so slower sampling is sufficient). Conversely, during periods of high activity (high electron den-

sity and thus high SNR), we can reduce the integration time and still obtain relatively accurate

estimates while resolving the spatial structure and dynamics of the event.

6.1 Suitability and limitations of the geostatistical model

“For us, such and such a planet is as arid as the Sahara, another as frozen as the North
Pole, yet another as lush as the Amazon basin. . . . We have no need of other worlds.”

Solaris
Stanisław Lem

In Lem’s novel Solaris, the character Snau condemns mankind for its lack of imagination. Be-

cause our conceptions of the unfamiliar are limited by the language used to express them, and

because our language stems from a need to describe the familiar, we cannot truly comprehend

what we lack the language to describe. Fortunately, the language of mathematics is robust and

continually evolving.

Model-based statistical inference faces a similar dilemma. Bayesian inference attempts to make

sense of data within the context of a prior model. But the act of assuming a prior model necessar-
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ily limits the space of inferences (indeed that is its purpose!). Futhermore, classical geostatistics

assumes that a covariance model is either known or can be estimated from the data and that this

second-order model is sufficient to perform inference. In the absense of perfect knowledge of the

underlying data

Assumption of Stationarity

For instance, underlying the covariance function (a.k.a. structure function or variogram) so widely

used in geostatistics/spatial statistics (to describe the dependence structure of data and their gen-

erative processes) is the assumption of wide-sense stationarity. As a second-order moment of a

much richer pdf, the variance/covariance is necessarily limited in its descriptive capability. Yet,

because it is easy to implement and usually good enough in practice, it serves as a convenient

tool for linking the pdf of the data to that of the unknown, predicted point. Richer tools exist for

mapping full marginal distributions to a joint cumulative distribution. The copula is one example

gaining popularity in the statistical literature. It could prove useful in spatial statistics as Bayesian

methods become more prevalent.

Then again, perhaps describing the full joint distribution of the r.p. will prove to be an un-

wise strategy. Much of the literature modeling nonstationary processes so far has been focused on

describing subsets of the domain of interest in terms of stationary processes; that is, forming non-

stationary covariance models from mixtures of stationary models (Paciorek and Schervish, ).

Another strategy is to exploit the structure of data at different spatial scales. The shared strategy

of these approaches is to transform or reorder the data so that the covariance matrix possesses a

structure that can be easily factorized. Multiresolution models (Nychka et al., ; Berliner et al.,

) are particularly useful for very large data sets, such as global satellite data. Fixed-rank

kriging (Cressie and Johannesson, ) encodes the variability of the the r.p. at different scales

directly into the covariance matrix.

For very large datasets, the covariance matrix can be approximated by a hierarchically semisep-

arable matrix (Martinsson, ). The matrix is factorized with a tree structure such that fine-scale

correlations inherit information from the courser levels. The resulting covariance matrices are

frequently sparse, but more generally possess a computationally advantageous structure.
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Assumption of Gaussian processes

The classical predictors of geostatistics are linear functions of the data. It can be shown (e.g.

Cressie, ) that this predictor is equivalent to assuming the r.p. is Gaussian. This is a convenient

assumption that is often sufficient, but it also presents limitations, for instance, when the process

is known to take only positive values or discrete values. Such processes can be accommodated with

classical linear predictors following a transformation of the data. But even that approach implies

a strong distributional assumption (the transformed data must have a Gaussian distribution).

Rather than make distributional assumptions and shoehorning data into a particular prior, a

Bayesian approach requires all pdfs to be discovered from the data. In particular, a hierarchical

Bayesian model may specify a non-Gaussian pdf for the process Y (s), for instance Laplacian:

f (y;µ,τ) =
τ

2
exp

(
−τ

∣∣∣y −µ∣∣∣) .
The parameters µ and τ must then be estimated from the data. Alternatively, these too are fitted to

pdfs (e.g. uniform for the location parameter µ and gamma for the scale parameter τ). Markov chain

Monte Carlo (MCMC) techniques are used to estimate the hyperparameters of these distributions.

Bayesian view of simple kriging

In contrast to the derivation in Section .., the Bayesian approach views both the data and the

process model parameters as random variables. Let Y (·) be given by the mixed-effects model

Y (s) = µ(s) + δ(s), (.)

where µ(·) is the non-random large-scale trend and δ(·) is the small-scale random component. Let

δ(·) be a zero-mean Gaussian process (δ(·) ∼ N (0,CY (θ)), and θ =
(
σ2

0 ,σ
2
1 , a,ν

)
is a vector of pro-

cess parameters defining the covariance function CY . The data are point-sampled from Y (·) with

additive white Gaussian noise:

Z(si) = Y (si) + εi , (.)

where εi ∼N (0,σ2
ε ).

Hierarchical Bayesian modeling has emerged as a successful approach for analyzing and pre-

dicting spatial and spatiotemporal data (Banerjee et al., ; Cressie and Wikle, ; Wikle et al.,

; Kang and Cressie, ; Berliner et al., , e.g.). Key to its success is the parsimonious ex-

pression of interdependencies among variables. Establishing conditional independence is impor-
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tant for that reason, but also because conditional distributions tend to be easier to to model than

full joint distributions. A general strategy for spatial processes, from Cressie and Wikle (), is

to decompose the joint density of unknowns into distinct stages:

[Data | Process] [Process | Parameters] [Parameters] .

So we begin translating the components of the simple kriging system to probability distribu-

tions. The data model (.) becomes

[
Z | Y (·), σ2

ε

]
=N (Y (·), σ2

ε I).

Similarly, Y (·) is a Gaussian process with mean µY (·) and Cov(Y (u,v ; θ) , CY (u,v ; θ).

For prediction and analysis of the process, start with the posterior distribution including all pa-

rameters (and hyperparameters) among them the semivariogram γY (or covariance function CY ),

parameterized by θ. Bayesian prediction involves finding the predictive distribution, i.e. the ex-

pected value of [Y | all parameters and data], with the expectation taken over the posterior distri-

bution:

p(Y |Z,σ2
ε ) = Eθ|Z,σ2

ε
[pY (Y |θ] . (.)

The posterior distribution is

[Y ,σ2
ε ,θ | Z] ∝ [Z | σ2

ε ,δ,θ ][δ | θ][σ2
ε ,θ]. (.)

In general, this distribution is difficult to obtain from data and requires simulation (via MCMC,

for example) in order to marginalize over the parameters.

However, for simple kriging the variogram parameters are known, and it is not necessary to

marginalize. (Cressie and Wikle () show how the posterior distribution is Gaussian such that

Y (s) | Z ∼ N
(
Ŷsk(s), σ̂2

sk

)
. (.)

The simple kriging can be solved in closed form, but this Bayesian framework for prediction

is much more flexible than classical geostatistical prediction. It provides a rigorously justifiable

way of accounting for transformations in any stage of the measurement processes, including non-

linearities. It permits the use of any distribution function, not just the Gaussian, since it must be

approximated by simulation in order to carry out the prediction. Finally, this solution through

simulation uses the data to compute a full posterior distribution (.), i.e. approximating the joint
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distribution of both the process and the parameters conditioned on the data. This obviates the

need for manual variogram fitting, although this doesn’t mean process modeling is suddenly sim-

plified. In addition to being more computationally complex, the “art” involved in variography is

transferred to the nuance of applying MCMC and other Bayesian methods (Brooks et al., ;

Cressie et al., ).

The Bayesian framework illuminates the connection between estimation (of parameters) and

prediction (of Y (·)). There are two options for accounting for random parameters in a Bayesian

model: () evaluate (numerically) the full posterior [Y (·),all parameters|Z] and then marginalize

over the parameter distributions, or () estimate the parameters first (through curve-fitting, variog-

raphy, etc.), then substitute the estimates into the predictive distribution [Y |Z]. Cressie and Wikle

() call the former Bayesian hierarchical modeling (BHM) and the latter estimated hierarchical

modeling (EHM), or plug-in prediction. Other authors argue that plug-in prediction results in an

overly-optimistic uncertainty estimate (Diggle and Ribeiro Jr., ; Chilès and Delfiner, ).

Goel and Degroot () show that accounting for uncertainty in parameters presents valuable

information in the prediction model. (But also that the regression should not be followed to hyper-

hyperparameters, etc.)

6.2 Temporal component and data fusion

Throughout this work, spatial analysis and processing has occurred at each instant of time. Tra-

ditionally, the temporal component of spatial analysis has often been neglected. This is especially

the case in geostatistics for mining surveys, in which the random field is quite stationary in time.

The ionosphere, on the other hand, is highly dynamic. As shown in Chapter , density structures

may last on the order seconds (below the integration time needed for high-resolution isr imaging),

or they may pass through the radar fov and evolve in complex ways over minutes. Clearly, the

temporal component of data processing is important here.

Extensions of kriging directly from m spatial observations to mT space-time observations ul-

timately face the challenge of inverting an mT ×mT covariance matrix. The space-time semivar-

iogram can also be problematic to model without assuming some form of separability. Instead,

Cressie and Wikle () recommends incorporating a dynamical model into the spatial predic-

tion, such that the sequential nature of the time axis plays a part. For instance, Kerwin and Prince

() incorporate a kriging predictor in the update step of a Kalman filter. Kang et al. () use

a temporal update model to improve the spatial mapping of satellite data.





In the case of radar measurements, and particularly isr, the dynamical model is afforded a natu-

ral parameter in the form of a Doppler velocity estimate. If a vector flow field can be recovered, the

upcoming state of the density can be predicted through a relatively simple model. More complex

models may incorporate ion and electron temperatures (also estimated from the radar backscat-

ter spectrum), and atmospheric and geomagnetic models. In a more general form, the Bayesian

approach to spatial(-temporal) analysis introduced above provides a natural way of incorporating

ancillary models or measurements.
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